Next Generation Climate Science in Europe for Oceans End-term Meeting

EUREC⁴A-OA

Improving the representation of small-scale nonlinear ocean-atmosphere interactions in Climate Models by innovative joint observing and modelling approaches

29 April 2024

Project Partners

- LMD-IPSL, France (Coordinator)
- LOCEAN-IPSL, France
- LEGOS, France
- CNRM, France
- LOPS, France
- UIB, Norway
- NORCE, Norway

- GEOMAR, Germany
 - MPI-Hamburg, Germany
- HEREON, Germany
 - UNIMIB, Italy
 - CIMA Foundation, Italy

EUREC⁴A-OA main objectives were:

- 1. Assess the impact of the diurnal cycle on energy, water and CO2 ocean-atmosphere exchanges & modification of the diurnal cycle and the related exchanges by ocean small scales and other extreme conditions;
- 2. Identify and quantify the processes ruling the ocean-atmosphere exchanges and uptake of heat, momentum and CO2 at the ocean small scales;
- 3. Determine the role of the diurnal cycle, ocean nonlinear small scales, boundary layer aerosols on the atmospheric shallow convection and cloud formation;
- 4. Provide improved model-metrics and parameterizations for the above processes to be integrated into operational prediction systems and ESMs.

1-month multiplatform field experiment

A large variety of ocean, atmosphere & coupled OA models

Very high-resolution sampling for understanding processes and validating models

Very high-resolution sampling led to new insights on the mesoscale

Climate

Ocean small-scale matters & fluxes are intenser than climatology

Air-sea CO2 exchanges in global model

- Watson et al. (2020, Nat. Comm.) re-initiated a debate on the impact of the 1 mm depth oceanic diffusive layer (ocean's cool skin) on the global air-sea flux of CO₂. Using a constant skin they diagnosed an increase of 15% of the global air-sea sink.
- Using IPSL-CM6 with a physical model for the ocean skin, we found that this effect goes down to 5% in a coupled configuration.
- Considering a constant cool skin leads to overestimation of the skin effect in mid-to-high latitudes.
- Considering that the cool skin is implicitly taken into account in bulk parameterization lead to the same regional errors.

IPSL-CM6 + ocean skin

Bellenger et al. 2023, JGR-O

The ocean small-scale & Air-Sea Heat Turbulent Fluxes

Ocean small-scale matters: air-sea fluxes of heat depend on them too

Sampling of 4 different water masses

Cooler SST patch (coastal upwelling) + Amazon plume + NBC rings:

ΔSST 2ºC, ΔSSS 6 psu

- First order effects: wind speed and SST
- Second order effects: subsurface warm layers, covariance between wind and Δq , TFB, and CFB.

The changes in near-surface winds induced by mesoscale (and smaller scale) SST structures (TFB) and near-surface currents (CFB) are on average 10-30% depending on the water mass

The cloud cycle in the atmosphere depends on the dynamical process

The dynamical processes (versus the thermodynamic control) depend on the ocean small-scale

Climate

Tropical rainfall model biases and the role of fine-scale air-sea interaction

Analysis of high-resolution (25km) NorESM simulation shows that latent heat flux is overestimated on finer-scales. This points to important directions for modelling

Regression analysis on coarse and fine scales Latent heat flux to 10m wind speed

Additional experiments have shown the importance of finescales for low-level clouds over the EURECA region

PI

Climate

JPI

Tian, F., et al. Resolution-Dependent Sensitivity of Tropical Precipitation and Latent Heat Flux in the NorESM Model, submitted to JAMES

Reducing climate model bias in Low Level Cloud

Figure 1. Flowchart for the offline data assimilation method

Figure 2. Prior (red) and posterior (blue) distributions for the parameter C8 with the best estimate from the DA method indicated by a *.

Key findings:

- Offline data assimilation for parameter estimation efficiently converged on parameter values for the cloud scheme, CLUBB.
- Iterative modelling approach confirmed optimum parameters.
- Cost function can be readily adapted to optimise model bias across multiple variables. E.g. minimize Low Level Cloud bias within a tolerable range of SST bias.
- Just two parameters (C8 and γ) strongly controlled Low Level Cloud in the fully coupled NorESM.
- Reduced NorESM bias in low level cloud *without* introducing large bias in other components.

Conclusions

- Ocean small (meso-submeso) scales contributes to first and second order air-sea fluxes in the Northwest Tropical Atlantic
- Measured CO2 fluxes are higher than those accounted for in the climatology (Jan-Feb 2020 was a large sink of CO2)
- The complex interaction between Amazon freshwater and NBC rings affects also heat turbulent fluxes (LHF)
- **LHF is strongly shaped by submesoscale dynamics (**SST fronts).
- The Dynamic effect (MABL changes) is more important than the Thermodynamic one.
- The ocean is an active 3D system, at submeso & mesoscale. 2D assessments need to be confronted with 3D varying in time ocean structure
- The parallel approaches of observations with hierarchy of models was strategic.

A project to continue to improve our knowledge on the physics of the small scales of the ocean and their impact on climate and ecosystems Arne Biastoch (GEOMAR), Sabrina Speich (LMD-ENS), Sebastiaan Swart (UGOT), Sarah Fawcett (UCT)

