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Definitions and open questions

Good ecosystem health:
« self-maintaining, vigorous, resilient to externally imposed pressures,and able to sustain

services to humans.
« contains healthy organisms and populations, and adequate functional diversity and functional

response diversity.
» Interactions amongst ecosystem components, able to ameliorate pressure effects

« expected trophic: levels are present and well interconnected. M
* good spatial connectivity. amongst subsystems. EmP“aQ:

THe Skoerevt o CYES!)
What’s: the tool to monitor- and assessall this? Frouan
t;ﬂ.l—.?wﬁ EL“GHE
. 1)
Ecosystem approach: D
optimal or healthy state asa goal for holistic management (m.m )
| k-t -lir
. . . fi -t::u' ﬁhrﬂl:w 4 ‘
Metaphor rather than quantitative theories —_—— .
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Issues in environmental monitoring (from spaceand not only)

in terms of:

- defining thresholds. (i.e. models, historical data archives, expert estimates,...)
- monitoring strategies (i.e. methods used, frequency observations, locations, ...)
variables (i.e.,OC products, processing levels, ...)

- sensors (i.e., single vs. multi-sensor, satellite life-time, ...)

- what to map: (P90, anomalies, trends, K-means, clustering colors)

What we deal with, and
what we do...



Data-driven vs. Process-based approach

Data alone are insufficient: for- understanding and
predicting- changesin ecosystem health

: \\0‘\
Everything that can be counted does not \Q Q
necessarily count; everything that counts O‘Q% \g\\o

cannot necessarily be counted. S\

{Albert Einstein)

Find a synthesis among theory, strategy and observation
in order to optimize the understanding of a physical process
with an essentialnumber of observablesand/or indicators.

Recognition => Menitoring => Comprehension

Collecting for what?




Process-based approach to reduce complexity

NE“{S & W_EWS 38| NATURE| VOL 469 6JANUA%\:§

FORUM Environmental dynamics
2 ’/’ f Simplicity versus complexity
PHER\L“ e eepinodpa i i b e b et e S i e

» Quantitative modelling usually required simplification — sphericalcows — to
render complex problems tractable

« Envisioning ad hoc sampling strategiesthat might overcome the complexity of the
system (maximizing costs and significance of the data)

System vulnerability is assessed by extracting those effective processes that
reduce the complexity of the system (Paolaand Leeder, 2011).




Successful stories

The Human Microbiome: successstoriesand challenges
TheavanRossum(EMBL,Germany)

Microbial community <mmm) Ocean health

...In terms of wrap-up indicator.

The consistent and complete collection and storage of associated metadata remains a
challenge. Despite this, a benefit of the meta-analysis of tens of thousands of samplesis the
opportunity to better describe the healthy state of the human microbiome, which has been

revealedto contain much variability.




Successful stories

Forests as complex adoptive systems
MariaJoséSanz(BasqueCentreforClimateChange,Spain)

Forest <mmm) Ocean environment

...in terms of effective and efficient solutions.

Actions to mitigate climate change are rarely evaluated in relation to their impact on adaptation,
sustainable development goals, and trade-offs with food security. Some of the most promising
adaptation options for land and ecosystemsinclude mitigation options.[...] This will require

to understand that they are complex systems that also respond to climate change
themselves.




Successful stories

The soil and cognitive control
GraziaMasciandaro(CNR-IRET,Italy)

Soil <4mmm) Ocean

...in terms of ecosystem: services and provisioning of products.

Soil is a complex system, which provides a wide range of ecosystem goods and services that
support ecosystem functioning and human well-being. In view of the remarkably complex
biological, chemical and physical constitution of soil, it is evident the necessity and urgency of
cross-disciplinary expertise for improved understanding of soil systemhealth and functioning.




Successful stories

Characterizing integrated ecosystems:Understanding the complexity
via application of a process-basedstate spacerather than a potential
CédricGaucherel(AMAPLaboratory,France)(withF.Pommereauand
C.Hély)

Physical system ﬁ Ecologicall system

...in terms of process-based modeling.

(Tett etal.,2013) “ "

New method that better reflects the properties of ecosystems,especially complex, historical non-
ergodic systems,to which physical concepts are not well suited.

The state space computed by these kinds of discrete ecosystem models provides a relevant concept
for a holistic understanding of the dynamics of an ecosystem and its above-mentioned

properties




JPI
OCEBMS

THANK YOU

Federico Falcini




Human microbiome: success stories and challenges

llp

Thea van Rossum, PhD
Computational biologist, microbiome

Lab of Prof. Dr. Peer Bork
Towards functional understanding of
biological systems

EMBL, Heidelberg

nature.com/callections bio ilestone

1 Some slides courtesy of Peer Bork & colleagues EMBL ::::



Known for a long time that microbes are important for health

2  Two researchers working with the plague in Philippines, 1912. EMBL ‘:i:lé:é
Credit: Otis Historical Archives National Museum of Health and Medicine/Flickr, CC BY 2.0 -



How to study microbes: until recently via growing them
..but 99% cannot be easily cultured, so only a few were studied individually

Petri dishes with nutrient cocktalil.. mvented 1887

From toilet air

Slide by Peer Bork



Now microbiome methods can take broad census in any environment

. - A Gene profiling (16S)
: " s & J i ' " Dl Metagenomics
S ' RNA Metatranscriptomics
Protein Metaproteomics
ATC C G GACTAG C Metabolites = Metabolomics

lllumina, Inc.

---------



Microbiome health research started with profiling

Who is there?
What can they do?

o What are they doing?
@ Who is doing what?

lllumina, Inc.

'''''''''

---------



Microbiome health research started with profiling

Who is there?

A,_HH What can they do?
What are they doing?
Who is doing what?

)

|
|
4

How can we use them to
measure and improve
human health?

i

lllumina, Inc.

_________



Microbiome health research started with profiling

Who is there?
> o What can they do?
What are they doing?

Who is doing what?

)

3

How can we use them to
(B measure and improve
) human health?

lllumina, Inc. What does a healthy human
microbiome look like?

N
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What does the human microbiome look like?

Content: mostly bacteria, >1000 species per person, exact number unclear

More bacterial than human cells, biomass of ~1.5kg (brain 1.3kQ)
With metagenomics we see ~250 species/person

Each of us carries a lot of unique genes (or rare species)

Qin et al, Nature 464(2010)59 2010 [} Danes and Spaniards 3 million genes, 4GB per sample

Li et al, Nat.Biotech. 32(2014)834 2014 | 3 continents 10 million genes, 5GB per sample

56 million genes, 10GB per sample Kids, diverse locations,
Coelho et ., in revision 2018 N oo iicoosss
Common ones found but still discovering rare genes & species
2020 *

0 1000 2000 3000 4000 5000 6000 7000 8000

m Number of samples



We know roughly what a ‘normal’ gut microbiome looks like

Lots of biological variation but some general patterns

Higher abundance of different bacterial Enterotypes are fuzzy and
groups create “enterotypes” associated with diet and disease

0 g

% ETB

. " CRP

- Fibres and fructans
Fibre-rich diet - Insulin resistance
CD risk allele T & Protein and animal fat
Colitis-susceptible mice Low-grade inflammation

Prevotella Bacteroides

Marisa Metzger

Costea et al. Nature Microbiol. 3(2018)8
Enterotype concept from Arumugam et al. Nature 473(2011)174

'''''''''
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“normal” = healthy?

“not normal” = unhealthy?

EMBL ::



Dysbiosis is an unhealthy microbial imbalance

Ny

Dysbiosis  Disease

“Imbalance”
Divergence from “normal”

T —

Population Individual
(time)

---------
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Dysbiosis definition can be circular

Is dysbiosis a cause or an effect?

Dysbiosis  Disease

o g

Measuring general “health” is difficult

''''''
.....



Schmidt, Raes* and Bork*,
Cell 172(2018)1298
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[llumina, Inc.

How can we use microbiome to
measure and improve
human health?




Metagenome-wide association studies (MWAS) link
gut microbiome to a multitude of diseases

* Gut 2006

*Nat. Rev.
Rheumatology 2011

«J. Med. Microbiol.
2005

«Nature 2011 Muiltiple

Sclerosis

*Eur. J. Neurosci. Parkinson
2009 Disease

16

*Nature 2006

Diabetes *Nature (2012)

*Nature 2012

Athero-

. *Nature 2011
sclerosis

Colo-
rectal
cancer

*Genome Res. 2012

Association,
not causation

Indication areas

Inflammatory diseases
Neurological disorders
Metabolic diseases

Cardiovascular diseases

Cancer

OO00 @

EMBL i

Slide by Peer Bork




Metagenome-wide association studies (MWAS) link
gut microbiome to a multitude of diseases
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Colon cancer: microbiome provides early stage detection
and complementarity to existing test

French cohort (N=156) with external validation on a German cohort reveals 20+ marker species
f at.'ﬁ
A
y S

Bacterial marker species
associated with colon cancer
— PCR test

18 Zeller*, Tap*, Voigt* et al, Mol.Sys.Biol. 10(2014)766 patent granted in 2018 EMBL i



Colon cancer: microbiome provides early stage detection
and complementarity to existing test

French cohort (N=156) with external validation on a German cohort reveals 20+ marker species

Fclt.'ﬁ
A
v S

What if all CRC patients have inflammation and we developed an unspecific inflammation test?

19 Zeller*, Tap*, Voigt* et al, Mol.Sys.Biol. 10(2014)766 patent granted in 2018 EMBL i



Meta-analysis identifies a specific, global microbial CRC signature

ART|CLES
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medicine
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Meta-analysis of fecal metagenomes reveals
global microbial signatures that are specific for
colorectal cancer
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Metagenomic analysis of colorectal cancer datasets
identifies cross-cohort microbial diagnostic
signatures and a link with choline degradation
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Meta-analysis

@ Patented species (EP2955232A1)

Significance Enriched in controls = Enriched in CRC
-log(g-value)
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Gut microbialspecies associated withCRC

® Selected species

Parvimonas micra [1145] @

Dialister mOTU [0561]

Gemella morbillorum[4513]
Peptostreptococcus stomatis[4614] @ @
F. nucleatum subsp. animalis [0776] @ @
Porphyromonas mOTU [2350]
Solobacterium moorei [0531] @
Clostridliales mQOTU [0799]

Clostridium symbiosum [1475]
Porohyromonas uenonis [4616]
Hungatella hathewayi [0882]
Porphyromonas somerae [2101]
Prevotella intermedia [0515]
Porphyromonasasaccharolytica [1517]/@ @
Parvimonas oral faxon 110[4961]

F. nucleatum subsp.nucleatum [0777] @
Parvimonas mOTU [0125]

Ruminococcus torgues [1376]

Prevofella nigrescens [0276]

F. nucleatum subsp. vincentii [0754] @ @
Fusobacterium sp. oral taxon 370[1403]
Peptostreptococcaceae mOTU[0436]
Anaerococcus obesiensis/vaginalis[0429]
Clostridiales mQOTU [2247]

Anaerofruncus mOTU[1529]
Porphyromonas mOTU[1184]
Porphyromonas uvenonis [2102]

Clostridium boltae/clostridioforme  [0886]
Subdoligranulum sp. [4738]

Clostridliales mQOTU [1296]

Streptococcus salivarius[0199] @

*
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Wirbel et al., 2019 Nature Medicine
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Meta-studies possible because of standardisation and centralisation
but metadata integration is challenging

Lots of technical variation as standards are still emerging
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Voigt et al., Genome Biol. 16(2015)73
Costea et al., Nature Biotech 35(2017)1069

Different protocols but also same protocol in
in different labs vary considerably

21

Benefits of combining cohorts:
» Statistical power
* Robust to study population
(geography, age, other diseases, diet, etc)

Requires: -

« Standardisation /HW

®. ENA
CAM| ¥¥w

« Sharing data

» Positive controls
« Sharing metadata
Eurngpean Mudeobces &rchnee

EMBL i



Associations can be unspecfic, confounded or indirect

“The gut microbiome is associated with type 2 diabetes”
Qin et al., Nature 2012, AUC 0.81 (Chinese cohort) Karlsson et al., Nature 2013 AUC 0.83 (Swedish cohort)

BUT a popular diabetes treatment is a major confounder

Treatment drug

(Metformin)

” EMBL i

rrrrrrrrr

Forslund, Hildebrand et al.,
Nature 228(2015)262

(with EU Metahit consortium)
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Microbial biomarkers need to take co-variation into account

Hmmulﬂme—l I'Itﬁﬂs.ic racr

A Caornposilconal
daperdent stade
slafn

miinie

i

The gut

Shochaaie

microbiome

\ost-intrinsic factopg

Host-extrinsic tacto™

10108) jEyueLuonnI

Biomarkers for diagnosis

have to be sensitive and
(disease-) specific

Medication has effect on
microbiome and vice versa

Schmidt, Raes* and Bork*, Cell 172(2018)1298

--------
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40 cultivated bacteria

Many “human targeted” medicinal drugs change our gut microbiome
Investigated with in vitro high throughput experiments

1197 marketed drugs

drug-bug screen for direct interactions:
1200 medicinal drugs vs
40 representative gut strains

>24% of human-targeted drugs
deplete at least one gut
bacterium, leading to side effects

Implications for
personalised medicine

L] Antibacterial
[} Human-targeted

[ Antifungal and antiviral With Typas, Patil and Zeller groups at EMBL
Maier, Pruteanu, Kuhn et al., Nature 555(2018)623

EMBL i
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[llumina, Inc.

How can we use microbiome to
measure and improve
human health?




Microbial therapy:
Fecal Microbiota Transplantation (FMT)

26

Transfer of stool from a healthy donor to patient

Positive effects reported in Gl and non-Gl diseases
Over 90% success in treating Clostridium difficile infection

Not so straight forward in other diseases

Mechanism is still unknown

EMBL i



Microbial therapy:
Probiotics work in some cases

Success: probiotic treatment for rural infants No benefit in many case-control studies:

4000 infants > 40% reduction in sepsis rate - Antibiotic-associated diarrhoea & Clostridium
difficile diarrhoea (Allen et al. Lancet. 2013)
- Eczema in infants (Allen et al. Arch Dis Child. 2014)

- Necrotising enterocolitis & late-onset sepis in very
preterm infants (Costeloe et al. Lancet. 2015)

- Antibiotic recovery (Suez et al. 2018 Cell)
- eftc.

Treat 27 infants (1$ each) to prevent 1 case of sepsis

» Large sample sizes required
» Strain choice matters

o7 Panigrahi et al., Nature 548(2017)402 EMBL i
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Microbiome supports broad understanding, succeeds with specificity

Microbiome methods enable broad census of microbial life and activity

Difficult to define “healthy microbiome”
“Dysbiosis” can be crutch

Example successes:
- Diagnostics (bioindicators) of specific conditions
- Microbial-based treatment -- even if mechanism uncertain

Important for success
- Large sample sizes & meta-studies
- Randomised controlled trials
- Next: mechanistic insights via in vitro experiments

EMBL ::



Thank you to Bork lab:
Peer Bork, Director of EMBL Heidelberg

Wasiu Akanni, Bioinformatics Software Engineer
Sina-Victoria Barysch, Project Manager

Ece Cevirgen, Postdoctoral Fellow

Pamela Ferretti, Predoctoral Fellow

Anthony Noel Fullam, Bioinformatics Software Engineer
Dienty Hazenbrink, Research Technician
Stefanie Kandels, Scientific Operations Manager
Supriva Khedkar, Postdoctoral Fellow

Michael Kuhn, Research Staff Scientist
Oleksandr Maistrenko, Postdoctoral Fellow
Marisa Isabell Metzger, Predoctoral Fellow
Alejandro Murillo Cordova, Postdoctoral Fellow
Sugqguru Nishijima, Postdoctoral Fellow

Askarbek Orakov, Predoctoral Fellow

Sebastian Schmidt, Research Scientist

Christian Schudoma, Bioinformatics Engineer
Kiley West Seitz, Postdoctoral Fellow

Christian Somody, Predoctoral Fellow

Thea Van Rossum, Computational Biologist
Sander Wuyts, Postdoctoral Fellow

Yan Ping Yuan, Bioinformatics Lab Manager
Josipa Zimmermann, Planetary Biology Program Manager
Maria Zimmermann, Postdoctoral Fellow
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, @theavanrossum @BorkLab

www.bork.embl.de

Thanks also to group alumni and collaborators
IHMC, IHMS, METAHIT (EU), METACARDIS (EU), I. Sobhani, (UPEC, F), M. von Knebel, H.

Brenner, N. Ulrich (HD), N.Segata (Univ. Trento); K. Korpela (Univ. Helsinki), Sofia Forslund
(now MDC), Genecore facility (EMBL), N. Typas, K. Patil, G. Zeller (EMBL) ... and many more
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Forests as: adaptlve systems
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Simplified forest fluxes .... We simplified to make policy decisions

Changes to environmental conditions®

Trees in forests grow  Trees in forests
and absorly cartson  respine, de, burm

Reforestaton,
R e gere s aton
(C uplake) De=forestation
(G release)
g T
'!-' "
=

Harvest

i Harwe sl
‘iiil %
EMT’ ool |

Land use change Forests remaining forests Land use change
{Afforeatation) {including Degradation and Regrowth) (Deforestation)
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Large expectations on NBS from Forest

Restoration is now days a global priority!

Bonn Challenge

-
Yy, EcosrTE (3
V RESTURAT'UH ‘;51{.} million ha

lem-m

i E wt
« 32 countrias 201 G . ALS
- 18 reglons
- 58 companles . 193 countries i
— - 16 indigenous people organis
-,_4&_;1 R Eltl’;l & - 58 NGOs
" - iodwersit :
1_ ) Balagicsi Dversity Taroote ¥ : EU Biodiversity Strategy By 2020
+ 168 countrias By 2020
By 2020 By 2030

By 2030




Are they an opportunity towards the future...

Countries are seriously considering at this stage their potential to contribute to
mitigation of Climate Change in the context of their NDCs, and the Paris Agreement
endorsed this process.

i | U‘.ﬁﬁhf« USEALOT OF 1°
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Land Use role:
large discrepanciesamong and between models and with GHGinv?

Comparisonof the global net anthropogenic land-related CO2 Comparisonof different models on their proyectionsfor the
fluxes estimated by AR5/ countries’ GHGIs increase of croplands 2012-2050
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Source: Grassiet al 2018 :
The gap between the updated estimatesisabout 4 The range goes from -5%to +30% .
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Mitigating climate through forest — NBS

Climate mitigation potential in 2030 (PgCO.e yr')
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Large expectations!
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Land Use role: Are potentials realistically calculated?
For example Reforestation
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Forest definition: Crown cover trehshold 25% / EFsingleone - correspondingto a semitropical forest for all Spain



Kappen climabe tyvpes of Spain

Are the foreseen opportunities realistic? ' :
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Stabilization (RCP 4.5) 2050 Current emission trend (RCP 8.5)
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Conssnts lnis availabies nf SoisncellSrec e R ]
Forest Ecology and Manage ment ph b b

journal homespage: www._sinavier.com/iccesie/forsco

A global overview of drought and heat-=induced tree mortality reveals
emerging climate change risks for forests

Forest are VUInerabIe. . Craig D, Allen®*, Alison K Macalady ¥ Haroun Chenchound ©, Bominigque Bachelet®, Nate McDowell®,

Michel Vennetier !, Thomas Kitsberger B, Andreas Rigl:ing". David D Breshears ", EH. (Ted) Hogms !,
Patrick Gonzaler ®, Rod Fensham', Zhen Zhang ™, jorge Castro ", Matalia Demidova®,
Jemma-Hwwan Lim . Gillian Allard 9, Steven W, RBunmine *, Akkin Semerci®, Meil Cobb




Mountain pine beetle and forest carbon feedback to climate change - CANADA

Cumulative impact of the beetle
out-break in the affected region
during 2000-2020 will be 270 Mt
C over 374,000 km2 (Kurtz el al
2008)

In the worst year, the impacts
resulting from the beetle outbreak
in British Columbia were
equivalent to 75% of the average
annual direct forest fire emissions
Qrgs%all of Canada during 1959—
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Response of forest insect attacks in a climate change context

The main identified mechanisms of positive

forest insect responses (i.e. more damage) to Cils
climate change are: o
2
higher number of generations per year and ;"’ﬁ';r ¥ %*.x
higher survival under warmer e @ ,,
temperatures, Temperature = o —I--\\\\ A + "™ _ prougm
lower tree resistance to insect attack under ~ ;
more severe droughts, N }1 = F
. . % 1
higher amount of breeding substrate for N Soedos H,:“"b
bark beetles following storms, and |
changes in substrate quality for defoliators Storm
due to elevated CO2 it i b e e

Jactelet al 2019



Recent case of a disease (Dothistroma pini) in north Spain

Pinusradiata
Monoculture (50% forest area)

Guipuzcoa (Spain)- January 2018 about
1.100 ha affected, sixmonths later 16.000
of the 65.000 ha of pine forestin the
province affected (mainly monocultures of
P. radiata

During summer 2018 also detected in
Vizcayaand Alava provinces. It will require
extraction of the wood in the coming
months




FIRES - Australia, 2019-20

Daytime high temperatures in December (1910-2019)
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Plant-soil interactions key to understand climate-change driven tree-
mortality effects on ecosystem functioning/services

Tree decline and mortality exacerbates how climate-change Cascading effects associated with climate-change-induced
affects soil biogeochemical cycling and soil microbial tree mortality results in alterations of soil CO, emissions
communities

Tree mortality
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Daniel Garcia-Angulo, A-M Heres, Manuel Fernandez-Lopez,Oliver Flores, MJ JCuriel Yuste, D Flores-Renteria, D Garcia-Angulo, A-M Heres, CBraga, A-M
Sanz, A Rey, F Valladares, JCuriel Yuste, 2020, Soil Biology and Biochemistry Petritan, IC Petritan. 2019, Soil Biology and Biochemistry



Diversity beyond number of plant species: structure and

composition of the fungal community

Estimating abundance of ectomycorrhizal abundance

T 'l'rl "il o I = 7‘ _‘I TS
Diustes {Soria) lturrieta (Alava)  Adiketza (Navarra)
PO mimfyear 1108 mm/year

500 mm) yeor

Fungal abundance is sensitive to water-availability
in Beach forest

e

Sart (No. tips)

Artikutza

Iturrieta

Diustes

Spring Summer




Past management affects affect response to climate change

We can’t conserveforest without learning from the past (traditional usesof the forests)

Legacies of past forest management determine current responses to |

\
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Land-use practices (coppices and dehesas) and management
severe drought events of conifer species in the Romanian Carpathians | intensity modulate responses of Holm oak growth to drought
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Tree species have different responses...

J. thurifera may benefit
from the rises in CO2
c J. thurfera concentrations due to
i their capacity to increase
C assimilation in spite of
intensifying aridity

o

0. faginea b

=k
5]

— == Favpurable years
Unfavourable years

=k
L=

fs

Basal area incremant [n:rrl:i a')
(o)

o 0 2 100 110 B0 100 110 120 130 140 110 120 130 140 150

Intrinsic water use efficiency (umol mal ')

Forestcomposition in the Mediterranean region might be altered due to both
differential physiological responsesto climatic changesand contrasting capacities to
withstand stressful conditions among coexistingtree species.

Granadaet al 2014 m



Forest cover and
composition
changes
contribute also to
Climate Change

2019
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Regional changes in air surface temperature due to losses in forest cover
between 2003 and 2012

1.0
L L4 *T:: 43 - - o
b psw "
3 L 0N
1% Tew =8l i
2| oo e T 5 T 4 Twinter 3
Ui o T b 7 1}
g = T HiAH gl ' % Tamngial : 3
0.5 $rees G i
o Ou's : : |
= . : i e
B ]
3 =4 ml Annual mean [BI H
E'l e PSS i " & . a
c - i - i
E i p.q.all.:lall - & E.]:.l-‘
i L Hi T s :
g as% 1o !
; = K |
a1 o e - ik \ Twinter 5
£ oY 1. e { i b %
- L pemey : s Tannual |
sl | oms e ¢ :
' ] i 308
= i
z (C) Diurnal variation (D) !
Y-2=1 0 1] 2 3 4

Zonal mean & se |"C)

Changesin mean annual air temperature (A) and diurnal variations (C)due to forest losses.
Symbol sizeindicates the magnitude of forest coverlosseswhile the color specifiesthe averagetemperature sensitivity to total deforestation



Stand to Region .... to Global (process and knowledge driven)

= ' Water cycle: land vs Atmosphere?
- i . s ileraciien Land-Lize Changs practice 2.8 deforescaron )
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Integrating soll blodiversity in predictisns of m— - By
terrestrial responses to dimate change and feedbacks x- 2
to climate. KEYLINK model (Deckmyn et al. 2020], now REGIONAL LEVEL
te be couple with global medels (i.e. OCHIDEE) Effects of historical land-use change in the Mediterranean environment
{Rusiz arel Sare, Z0E0). Anintegrated wnderstarding of the effects of past
Improving complex terrestrial models? and lecal land-use changes in the regional fdediteranean environment.
summarize fundamerntal abserved [rtarsctions batween land-use changs

Effects of historical management, legacies interacting and the enwiranment, idertifiad through = semi-systematic resies of 23
with present responses af ecosystems. [Flcu's. et al sciantific case-studies from arourd the Basin,

2020}

And early markers f indicators of physiological

wulnerability

Integration of knowledge
\4 Vg
Water and nutrient availability lirmit the ability of our forests to mitigate climate change,
Understanding processes and linking mitigation and adaptation is fundamental in the land use sectos
Preserving current ecosystem carbon stocks is crucial to avoid aggravating climate change
Restoring torest ecosystemns is a need and requires understanding of the coupling of atmospheric and terrestrial processes
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Bivariate map of forest biodiversity significanceand intactness
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Hill et al 2019. Front. For. Glob. Change,29
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Functional relations are key...



After 125 years forests are still different by 16%
104 chronosequences
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Former mine in Navarra Norse agriculture in Greenland J Amazonian crops

Forests may require more More positive fungi-plant Sequencing the
than 140 years to recover interactions in undisturbed sites Brazil nut genome

in Pre-Columbian
settlements

mblonts

Brazilnut tree

HMATEES
[ X X |
] 1

1. What regions have
changed since the
Decomposers release from
domestication?
Rodriguez-Ura et al. JApp! Ecol (submitted) 2. }[/}‘\]/(I‘)]saé T’ljeré?gggg relate to

Species richness and diversity Pathogens
recovered but not species

3. Has the species
identity.

recovered its adaptive
potential?

Ectomycorrhizal communities
inside both mines are still
different to outside.
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Mediterranean forest 3 management scenarios
WoOD ENERGY CARBON STORAGE VIULNERABILITY REDUCTION
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services by 2100 P a
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RCF 4.5

Relative ecosystem service L
provision taking as reference the
BAU.

Values reflect the ratio between

the total accumulated service '*'_
provision by 2100 under each a |
scenario and those of the BAU. E L

The circle with black outline

indicates equal service provision
to the BAU = 1

) Timber harvest g Mushroom production * Soil erosion mitigation
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Different temporal patterns of Suggestion for an integrative concept
ecosystem responses to climate change of adaptive forest management

Scale
Measured initial response
Sultabllity checks /

\ overshoot 4 Adaptation Mitigation International Modelling
=
|
— /\,'-. Decision support |
National +
t Priority mapping of
L adaptation strategies
|-=_L' Regional I :
— Decision support |
w 2 \
= B .
= = - Implementation of
— U adaptation measures
(£
—
o
A Bolte et al 2009

(after Rustad 2006) TI M E

Adaptive management is one of the most important challenges for forestry in the
decadesto come, reflecting the intensity of local climate and site change and its uncertainties
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Where we need to go?

Forest are complex systems « Many forest ecosystems have been shaped
by human influence and tree species

composition and stand structure have been
managed with hindsight to well-defined societal
expectations.

* We can satisfy many expected ecosystem
services emerging from forests, but still
need to meet ends when balancing the trade-
off between the provision of restoring
ecosystems functionalities (including
adaptation needs!), public goods and
commercial interests is required.

Vi

Biodiversity, climate, water, forest products...

We need to take advantage of the complexity...

JPI
OCER™MS

TUESDAY, JANUARY 12, 2021
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The Soiland Cognitive Control

G. Masciandaro, CNR-IRET, Italy

s @

JPI OCEANS
Musing on the Conceptof Good Environmental Status: the complexity of the
status & the status of complexity

Joint Workshop 2-4 December 2020



SOIL COMPLEXITY

>1 billion G e
Soilis a complex ecosystem made up "/')\'A

of aggregates,organic matter, \ >100 millions
microscopic and macroscopic >1 million

organisms
>100 thousand

A spoonful of healthy soil contains
many millions of different
microorganismswhich perform vital . e
functions, such as storing nutrients of bacteria - o ofsail

and making them availableto plants
givingthe soil the function of fertility




T4 SOIL COMPLEXITY @

A central concept in complex systemsisthat the dynamics of the system“emerges”
from arelativelysimple set of interactions between the components

Complexity f'

Diversity
Functionality p— a Activity
i | ( ﬁ“\’luﬂﬂ; \l { 1
: i--_.-' .
MINERAL ' Cevele and Climate change and
AND Bies el adaptation
__ORGANIC COLIODES ~ restoration P
fJ / |
T T e ' . r
—r )

The necessityand urgency of cross-disciplinary expertise for the understanding of soil system
functioning is evident.
The multidisciplinary approach isnecessaryin all the sciencesconcerning complex ecosystems,
like soil and water
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Cross-disciplinary cognitive approach

Vil
Social science

Management and behavior

H-\.

o i ..'\"'-\. =
Environmental -:.; Agronomy
science A =  Sol pnllutlnn S0il fem!rly i

——w‘
k‘x H-Hﬂce k /

Soil ledl‘u'B-l’Sﬂ'f P e —_ Soil carbon

Ecology ] Climate science
,

Hou et al., 2020



COGNITIVE APPROACH: MAN-SOIL RELATIONSHIP @

Man's perception of soil evolvedin relation to his
cognitive and technological development from PERCEPTIONto
LEARNING:

1) the perception of soil asa source of products necessaryfor food

(agricultural conception)to
2) the recognition of establishinga balance in the coexistence
between man and soilto know the limits of the soilasa non-
renewable resource (environmental conception).

Man hastwo attitudes: m

1) the man-farmer behaveslike a A
parasite towards the soll
determining degradation and
fertility loss

2) the second attitude isaimed at o J

COMYEMNTIOMAL CHEEM SUSTAINABLE  RESTOHATIVE REGENMERATIVE

caring for the soiland maintaining
its fertility: it isthe symbiosis of
man and soil

Frosigy | Madris

Soilhealth may be lost quickly but it is slow to be restored



PERCEPTION OF SOIL AS A LIVING SYSTEM Gr I

Soil under our feet is a living system: home to many fascinating plants, animals,
microrganisms; habitat for flourishing biodiversity; provides us with food and clean
water

However, soils are fragile and they can take thousands of years to form but can be
destroyed in hours!

LEARNING TO KNOW THE SOIL
It is important to know the limits

T e ety beyond which the soil can be
GRS, | destroyed. Even where soil degrades
POy Sham Serviciass W0
Peman meosing and more slowly, the effects are severe

gy glan haahh

and difficult to reverse

This means that we need to take care

oy Necan inten. lam of soils. Soil degradation is largely
T i g driven by how we live

miLreag & Sod Feaalth

ECO8YVATE HEALTH

SIMPLY PUT, HEALTHY LIVING SOILSKEEPUS, and the WORLD AROUND US, ALIVE and HEALTHY



5 drivers of soil
biodiversity loss

] 0 It
I‘hE_;r n

Keep soil healthy and alive, @r]

Protect soil biodiversity

T
_e gt 5 DECEMBER 2020

World Sail

Keep soil alive,
protect soil biodiversity

: 5 benefits of soil biodiversity
< o<
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“2 Healthy Soilsfor Healthy Life
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S Soil Quality and Health @

Antropocentric definitions

» “the capacity of a living soil to function, within natural or managed ecosystem
boundaries, to sustain plant and animal productivity,maintain or enhance
water and air quality, and promote plant and animal health” (Doran,2002)

» “a healthy agricultural soilis one that is capable of supporting the production
of food and fibre,to a level and with a quality sufficientto meet human
requirements, together with continued delivery of other ecosystemservices
that are essential for maintenance of the quality of life for humans and the
conservation of biodiversity” (Kibblewhite et al., 2008)

» “the continued capacity of soil to function as a vital livingecosystemthat
sustainsplants, animals and humans” (USDA. Natural Resources Conservation
Service. Healthy Soil for Life, 2018)

» "the continued capacity of soilsto support ecosystemservices”(Soil Mission
2020, in line with the UN SustainableDevelopment Goalsand the EU Green
Deal)



>4 SOIL ECOSYSTEM SERVICES

CNRIRET

The assessmentof Soil Health becomes connected to the evalutation of the ecosystem services
provided by soils

Soil threats Soil functions, i.e. (bundles Soil-based
of) soil processes ecosystem services
Erosion Habitat provision

{roots, soil organisms) Biomass production

SOM decline Element cycling

Biodiversity conservation

Contamination Decomposition

: ' i Erosion control
Sealing 5oil structure maintenance
‘ Biological population
Compaction regulation Pest and disease control

Biodiversity loss
retention, percolation)

, /)
- / Water quality and supply
Salinization Organic matter cycling
- ' {humus formation,
Landslides & & Climate regulation

C sequestration)
floods

- Water cycling (infiltration,

Conceptual presentation of linkages between soil functions, soil-based ecosystemservicesand soil threats
developed during the iISQAPERworkshop at FiBL, Frick (October 2015).
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Ecosystem services or services to ecosystems?

CNR IRET

e o W N b

Ecosystem Services (ES)

Cultural Services
* Spiritual &

Provisioning Regulating
Services Services
Food Clirmate
Fresh water
Fuelwood
Fiber

Biochemicals Inspirational

regulation Eclui

Supporting 5e
Ecosystem functions: Mutrlenkc
Spalisl struchure,

Water Sense of place
purification *  Cultural hertage
Follinatian = SIE

iy
—i

Reciprocity

SEnﬂces to Ecosystems (S2E)

Protecting
Services
Habstat
protection
Wieding' culling
Ritual regulation
Cultaral
pea ki bitiordg - &
OFESChpTans on
Bpecies and
habiftats

Enhancing
Services
Culbtvation
Dormesiich tan
Trait selection
Tranuaeation,
range spresding
Pruming
Fertilizing
MNutrignt
{repyTling

Supporfing Services

biotic actons, cultural

Enhancing culturad-ecological integrity, oy
baliefs; Indigenous workdviews, TEK

(Comberti et al.,2015)

Restoring Services

Irreprcving sail f
waterfalr quality
Habitak)/niche
[rejconstrection
Mutrbent release
[burmeng]
Planfing, Lowwing
Revitalisation of
eeo-cultural
harvashing




Soil Health is Central:
Food, Crop, Farm and Ecosystem Health

Dependence Upon Soil Health

Food
Quality

» Nutrition

* Flavor, Aroma

**Clean”
(toxin-free)

= Shelf Life

Soil
Health

Farm
. Health

' *»5oil organic
\ matter
*» Economic viability

:.: 'I"-,'!' 2]
)

* Climate * Increased
resilience | biod

@



SOIL HEALTH INDICATORS

Selectminimum data set

Indicators chosen based on site-specificsituation

Increase in sensitivity

N\

Physical properties
Expressedby Structure, Texture,
Infiltration, Bulk density, Water
holding capacity, Resistanceto

erosion

Agro-chemical properties
expressedby plant development
and soil chemical-nutritional
parameters: pH, Salinity
Nutrient availability, CEC,
OrganicMatter

Biological properties
expressed by
Microbial diversity
(Metagenomics)
Microbial functions(enzymatic
activities, microbial activity,
metranscriptomics,
metaproteomics,
metametabolomics)

—_

=

=

©

They change very slowly, and only when the

soil undergo a really drastic modification

Highly sensitive to management practices and

environmental changes

Ecosystemapproach because they represent
the main processes(functions) occurring in soil



MOLECULAR TECHNOLOGIES APPLIED TO SOIL ECOSYSTEM
Complexity

. _ L Nutrients
Organic T WA B R BIOGEOCHEMISTRY
matter e ”

Humic-enzyme

complexes
ol 25

i |

Carbon

JIL sequestration
Metagenomics isthe

study of genetic
material recovered
directly from
environmental
samples.

Metaproteomics isthe study of all proteins
recovereddirectly from environmental
samples. It has a considerable significant to
elucidate the link between biodiversity of
microbial communities and their functions.

ilL Applications: ilL

Soil decontamination (selectionand

MICROBIAL inoculums of selected microorganisms) FUNCTIONAL
Soil fertility(in: situ Biostimulation)
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BIODIVERSITY matter sequestration and stabilization) r
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BIOINDICATORS
Ecosystem level

Molecular biology improved the understandingof the
microbial communities. Currently there is a major emphasis
on the application of "omics" approachesto determine the
identities and functions of microbes inhabiting different
environments.
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The current molecular toolbox encompassesa range of DNA-based technologies
and new methods for the study of RNA and proteins extractedfrom soil samples

Genomics, Transcriptomics, Proteomics and Metabolomics

U

Metabolomics

Depolymerization

Soluble Microbial
substrate biomass

Enzyme  Transcriptomics (RNA) of
Turnover enzyme-coding genes
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*Microbial biomassquantity and biodiversity
‘Microbial biomass activity: 1) general parameters (ATP,CO2,Dehydrogenase)
2) specificparameters (hydrolitic enzymes)

Role of Soil Enzymes

»Decomposition of the organic substrates
» Fertility and productivity of soil

»Soil response to ecological and functional recovery practices after natural

or human stresses (resilience)

Any alteration in the enzyme/protein structures might have consequences for the living
organisms - soilwould remain lifelesswithout enzymes.
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Minimum Data Set

- Identify specific parameters

- Measure them over time and compare to
reference conditions or judge against
common standards

Trend Changes

Improvements to (or degradation of)
soil can perhaps best be visualized as
trend changesthat pointin a
positive (or negative) general
direction over the years.
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STEPSTO MONITOR SOIL HEALTH

Decoding functions of :
micrabvial genormes

beria, A
Lrige, '.II|||-. H .
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Methods for capturinginformation

- visual assessmentsin field;

- soil sampling with |laboratory analysis;

- remote sensing;

- modelling, crowdsourcing and citizen science
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e Report of the Mission Board for Soil Health and Food 2020O

“By 2030, at least 75% of soilsin each EUMember State are healthy, or show a
significantimprovement towards meeting acceptedthresholds of indicators,to
support ecosystem services*

Efficient soil Health Indicators

1) Presence of soil pollutants, excessnutrients and salts
2) Soil organic carbon stock

3) Soil structure including soil bulk density and absence of soil - plot/ field level
sealing and erosion

4) Soil biodiversity

5) Soilnutrients and acidity (pH)
Vegetation cover 5
Landscape heterogeneity - Landscape level
Forest cover

N N N N

6
7
8
(Soil Mission 2020)

Measurements are soil-specificshowing different values for different soil types
accordingto their land use
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EU MANAGEMENT ACTIONS FOR SOILPROTECTION

« Towards a Thematic Strategy for Soil Protection (COM(2002)179)
« Thematic Strategy for Soil Protection (COM(2006)231)

* Proposal for Soil Framework Directive (COM(2006) 232)

et

The overall objective was to protect soil and use it in a
sustainable way on the basis of the following guiding

principles: . _ o The proposal was
* Preventing further degradation of soil and preservingits | \ :thdraw in 2014 because
functions;

some Member States
(Germany, France, The
Netherlands, United Kingdom,

Austria) did not accept it
due to the different and
specific need of each
Member State

» Restoringdegraded soilto a level that enables at least its
current or intended use, which entails considering the cost
implications of restoration
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. COMMON AGRICULTURALPOLICY(CAP) IS ONE OF THE MAIN
EU LEGISLATION RELATING TO SOIL PROTECTION

ENSURE INCREASE
AR M OMF LT WESFRS

CILATE 500 NG EMWRUNMEN [5] FRESERVE
ACTION CARE ANDSCAPES &
a SEH T

CAPobjective and measures related to ENVIRONMENTAND SOIL
aim to prevent and mitigate soil degradation processesin agricultural areas
through aclosemonitoring to study soil conditions in the EU

CAPpromoted Soil Protection particularly increasing or mainataning SOM and
Soil Biodiversity in agricultural lands.

It existssince 1962 to addressgood quality, safe and affordable food products while supporting
European farmers. Recently, CAP(Post-2020 CAP,COM(2018) introduced measures directly
linked to SoilProtection, underlining the need of implementing sustainable soil management
within the future agricultural policy in the EU (possibleentry into force 2021)




The mission’s policy relevance

Sustainable Production of i Diedl
food and
Development Goals other biomass o Biodiversity
Landscape Preserving and o Farm to Fork
and cultural protecting o Forestry
services biodiversity o Zero Pollution
5 Climate Law
COVID recovery and .
investment package
Soil MU  Other EU policies
Nutri:ent and redutt?ﬂn of I Common A‘gricmtural PGHW
cycling GHG emissions Circular I:tlllﬂ:lEEDHﬂl'ﬁ‘y'

8]
o Water Framework Directive
O

In terms of policy, the SoilMission will be a main tool for achievingthe objectives of the UN
SDGsand the EU Green Deal, both of which aim to reduce biodiversity lossand pollution. Key
elements are restoration and preservation of Heathy Soils
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SOILHEALTH MISSION AND OTHERMISSIONS @

CINR IRET

Adaptation to climate
change, including societal
transformation

Healthy
oceans, ‘

seas, coastal
and inland

waters areas

Cancer

. Soil health

- Yy

Climate-neutral
and smart cities




CONCLUSIONS

Soil cognitive control should be based on a paradigm shift: from the
traditional more static to a dynamic approach in which the soil is no more
considered a stock to be exploited, but as a precious living organism to be
cared for

“Caring for Soil is Caring for Life” is the title proposed for the Soil Health
and Food Mission

Accurate and sensitive indicators, such as soil biodiversity, should be
studied by traditional and innovative techniques that will offer new
opportunities to understand the “Soil Health”

Multidisciplinary new research approaches are therefore essential to
filling gapsin knowledge perceived in a complex soil ecosystem
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Ecosystems are complex objects, simultaneously combining biotic, abiotic, and human componentsand processes.Ecologists still

struggle to understand ecosystems,and one main method for achieving an understanding consistsin computing potential surfaces
basedon physical dynamical systems.We arguein this conceptual paperthat the foundations of this analogy betweenphysical and
ecological systemsare inappropriate and aim to propose a new method that better reflects the properties of ecosystems,especially
complex, historical nonergodic systems, to which physical concepts are not well suited. As an alternative proposition, we have
developed rigorous possibilistic, process-basedmodels inspired by the discrete-event systems found in computer science and
produced a panel of outputs and tools to analyze the system dynamics under examination. The state space computed by these
kinds of discrete ecosystemmaodels provides a relevant concept for a holistic understanding of the dynamics of an ecosystemand
its abovementioned properties. Taking as a specific example an ecosystem simplified to its process interaction network, we show

here how to proceed and why a state space is more appropriate than a corresponding potential surface.

1. Introduction

Most ecologists would admit that ecosystems are complex,
although some might appear simple. Ecosystems appear to
form emergent structures (e.g., [1, 2]), exhibit nonlinear
properties (e.g., [3, 4]), and be clearly out of equilibrium
(e.g., [5, 6]). Moreover, the fact that most ecosystemstoday
strongly interact with society and contain several human
groups heightens this feeling of complexity [7, 8]. Yet, most
studies focus on just some components of the ecosystem,
either biotic (e.g., speciescommunity), abiotic (e.g., climate,
element cycles), or anthropic (ecosystem services), and a
definitive demonstration of integrated ecosystemcomplexity
is still lacking. In addition, most analyses focus on com-
plexity at a specific time, often concentrating on patterns
rather than on long-termdynamics [1, 9]. In this conceptual
paper, we propose a detailed methodology for the long-term
study of ecosystem dynamics and for qualifying their
complexity using process—based models.

Ecosystem complexity is derived first and foremost from
the combination of biotic, abiotic, and human components
which also form a tangled web of continuous interactions
[10-12]. Some socioecological systems seem quite simple,
with few components and few processes, but these cases
remain scarce. Theoretical ecologists with a true interest in
the whole (socio)ecosystem, not just some parts of it, have
spent decades debating ecosystem dynamics and their sta—
bility or resilience [3, 13]. Whether a potential function or a
resilience surface [14-17], synthetic and conceptual models
should be able to fit any specific trajectory observed in the
ecosystem under study. The recent nature of ecology as a
discipline and mostly partial and short-term observations
provide us with a limited view of ecosystems.As a result,
such models often focus on short—term dynamics and mainly
on pattern analyses [9, 18, 19]. Models of complexity in
ecology thus remain phenomenological. For this reason,
even partially validated process-basedmodels of ecosystems
offer a promising opportunity to produce understandable,



robust long-term dynamics. Here, we intend to review the
mainstream models of ecosystem dynamics, to demonstrate
some of their limitations, and finally, to provide a process—
based methodology that will hopefully bypass such
limitations.

When studying or managing an ecosystem, be it tem-
perateor tropical, terrestrial or aquatic, natural or anthropic,
a suggestedpreliminary stepis an exhaustive understanding
of its overall dynamics. Practically speaking,ecologiststoday
investigate whether or not a specific ecosystem studied is
stable[3, 4], resilient [2, 20], and moreover how far from any
tipping points or catastrophic shifts it lies [21-23]. Physics
has long provided powerful tools for these objectives with
regard to physical systems. For example, physical models
often provide ordinary differential equation (ODE) systems
and summarize the most probable dynamics (and sharp
changes) into phase spacesand potential functions [24, 25].
Such syntheses then enable confident predictions of future
system states, to prevent unwanted states and advise on
expected states.

Despite recent attempts, such synthetic models for
ecosystems are still lacking. Some theoretical models have
been proposed [26-29], but they rarely fit and accurately
calibrate observations, or if so, rarely study more than one
state variable (e.g., biomass and/or annual rainfall). In ad-
dition, such models are probabilistic in essence, whereas
possibilistic models would afford exhaustive exploration of
complex (eco)system dynamics. Here, our first and most
important objective is to provide ecologists with a new
conceptual framework for achieving this goal of exhaustive
computation of any ecosystem dynamics [30, 31], and to
simultaneously illustrate the approach in a complex case
study. Moreover, the mainstream models used today in
ecosystemecology still suffer from several limitations [32].
Our second objective is to list and debate these chief
limitations.

For this purpose, we recently developed an original type
of models [18, 30], basedon the discreteeventand qualitative
systems commonly used in theoretical computer sciences
[33-35]. Here, we will illustrate the approach with a qual-
itative Petri netin the caseof aninsect (termite) colony [36],
which is presumed to mimic an ecosystem undergoing
abrupt qualitative change, and potentially experiencing
strong long-term disturbances. We will show how the
gualitative state space(sometimes called the reachability or
labeled transition space) of the modeled insect colony
provides a relevant synthesis of this ecosystem’s dynamics.
Finally, we will analyzethis state spaceto verify that it is not
subject to the same limitations as identified in other eco-
logical models, and to suggestfuture directions.

2. State Space of a Qualitative Ecosystem

Here, we propose an original model intended to represent
the overall dynamics of any complex (socio) ecosystem.The
proposition states that it is possible to exhaustively capture
overall ecosystem behavior on the basis of a qualitative,
discrete, and integrated description of its interactions [18].
The interactions within a given ecosystemare all the relevant

Complexity

processes involved in the system dynamics, hence the
process-basedmodel. This kind of discrete model has already
proved useful, and interested readers may refer to papers
describing the mathematical details of the method and some
applications [30, 37, 38]. In the present study, we illustrate
such an approach with the specific case of a simplified
theoretical insect colony. This termite colony is assumedto
mimic a typical ecosystem comprising biotic, abiotic, and
anthropogenic-like (the farming termites) components[36],
as well as all their associated (i.e., bioecological, physico-
chemical, and socioeconomic) interactions. The output from
the model consists in a discrete qualitative state spaceof the
ecosystem, grouping all the states that the ecosystem may
potentially reach from an initial state and thus all its
trajectories.

We chose to model eusocial insect colonies for the
reasons that they experience drastic change (tipping points,
TPs) over time, but any other ecosystem-likemodels may be
used (Figure 1(@@)). We choseto work on Macrotermitinae
termites [36] which, like some ant species, construct large
colonies (up to millions of inhabitants), [39] sometimes
considered as super-organisms with complex functioning.
These termites cultivate fungi in special chambers, build
aerial structures (called mounds)to improve air circulation,
and divide their nests into a royal chamber, fungus cham-
bers, and eggrooms (Figure 1@)). Given the ability of this
eusocial species to develop food production, termites might
also be considered as mimicking humans (farmers) in
agrosystems.

One way of conceptualizing the ecosystem under in-
vestigation is to represent it as a graph (i.e., network) of
components connected by processes, the interaction net-
work, whatever the interactions (Figure 1(b)). The modelis
fully qualitative (Boolean) and allows components to be
present or absent only. The resulting ecosystemgraphis then
manipulated using a rigorous model basedon adiscrete Petri
net to formalize any change in the topology of this graph
(i.e., the neighboring relationships between present com-
ponents). Developed in computer science [31, 35], Petri nets
are commonly used in biology (e.g., [40, 41])) and are
powerful tools for rigorous formalization of changes in
network topologies occurring during systemdynamics. Such
Petri nets are radically different from traditional ecological
models basedon ODE equations (e.g., [2, 4]) in that they
deal with topological changes in interactions during the
simulation rather than dynamics carried by a fixedtopology.
Our approach might be closer in spirit to other attempts,
such as Richard Levins’ “loop analysis” dedicated too linear
systems and its most recent versions of qualitative models
[42].

Discrete—event models provide state space outputs that
can be readily analyzed to highlight relatively stable (or
resilient) dynamics, tipping points, and any other specific
trajectories. Such state spaces show similarities with the
state-and-transition models that have proved useful in
modeling ecological succession [43], except that our state
spaces are deduced from predefined processes instead of
beingdirectly drawn from observations. Hence, such models
are possibilistic models as they exhaustively explore the
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Figure 1:Graphic of atermite colony (@) and its simplifiedinteraction network (b). Termites modify their environmentand build amound
with various chambersto host the colony (@). The original ecosystemgraph is composedof 12 nodes (Table 1) with five colors representing
their different natures (b, left). Their 15 associated interactions (i.e., processes, Table 2) are shown directionally (b) from component

conditions to realizations.

possible dynamics of the (eco) system, and differ strongly
from traditional probabilistic models in ecology [17,44]. It
appears crucial to identify all possible trajectories to un-
derstand the overall ecosystem dynamics, rather than fo-
cusing on the most probable trajectories.

In this kind of framework, any ecosystem can be rep-
resented as a graph, in which every material component of
the ecosystem(e.g., atermite population stage,fungi, air, and
water) is represented by a node, with two Boolean states:
“present” (the component is functionally present in the
systemand it may impact other components, also denoted as
“+” or On) or “absent” (functionally absentfrom the system
or “=" or Off). So, any state of the systemis defined by the set
of “+” and “~” nodes (Figure 1(b)). Any physicochemical,
bioecological, and/or possibly socioeconomic process is
translated into a Petri net rule, which describesthe condition
to be fulfilled, and the realization to be executed in sucha
case. Since the rules modify node states, the entire system
shifts from one state to another through the discrete suc-
cessiveapplication of rules [30]. Rules progressively produce
the state space, which provides the set of all system states
reachable from the initial state and by the defined rules
(Figure 2). This is easily translated and computed by any
Petri net engine [35, 45].

The Petri net of the termite colony provides a highly
instructive state space [30]. The termite modeling reaches
only 109states (of 212possible states, approx. 2%), sowe can
draw the exhaustive state spaceto visualize it (Figure 2). For
larger systems,analysis can be performed automatically and
without drawing the state space [37]. The state space graph
displayed here is composed of several (colored) structures,

which we will further describe and interpret in ecological
terms: the initial state (numbered 0, and represented by a
hexagon, Figure 2-A), two topological structures usually
called strongly connected components (SCCs, defined as a
setof systemstatesin which every state may bereached from
any other stateof the SCC, Figure 2-Band B), and a number
of decisive paths (e.g., irreversible ecosystemtrajectories and
tipping points, Figure 2-C), ultimately leading upward to
basins and their associated deadlocks (states from which no
other state is reachable, Figure 2-Dand D', squares). Hence,
the state space provides a convenient, precise summary of
the system’s behavior, its dynamic features, and all its
possible qualitative trajectories.

From this state space, it is possible to compute a merged
state space automatically aggregating all the states of the
topological structures mentioned previously (Figure 3(@)).
In this merged space, the SCC properties conveniently
capture the ecosystem’s structural stabilities, that is, the
number of states and the trajectories that qualitatively
connect them (e.g., Figure 2-B). Tipping points are also
visible as the successive rules (Figure 2-C and 3@)-C)
shifting the systemfrom structural stabilities (e.g.,B or B") to
deadlocks (e.g., D or D), here meticulously identified and
listed [30]. Other possible features (e.g., basins connecting
the previous features) and ecosystem collapses (deadlocks)
may also be computed and displayed on the samestate space.
Such topological analysis is usually accomplished on state
spaceswith as many as millions of states, in more complex
and/or realistic ecosystem models [37, 38].

From this merged state space, we can then compute a
potential-like surface (Figure 3(b)), referred to hereinafteras
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Figure 2:The full state space(or marking graph) of the termite colony model. The state space comprises 109states labeled with a pair n/s
where n is anidentifying number for the marking andsis the number of strongly connected components(SCCs) for the basin or deadlock it
belongsto. The initial state is displayed as a hexagon (), deadlocks (states leading to a terminal state with no successor) are displayed as
squares (five in total, of which two are in zonesD and D', and one (A) is close to the initial state), an exampleof two tipping points is
displayed asa red segment(C), while other statesare displayed as circles. Each SCC or basin is highlighted using a separatecolor (e.g., SCCs
B and B’ are drawn in orange and green). The edgesare directed and labeled with the number of the rule that was applied to perform the

transition (defined in Table 2).

the computed potential surface to distinguish it from other
traditional  surfaces used in ecology and elsewhere
[14, 17, 25]. While stabilities may be represented by wells
(e.g., Figure 3(b)-B), tipping points are representedby ridges
connecting these wells (e.g., Figure 3(b)-C), and deadlock
states or sets of states are represented by assigning them a
virtually infinite depth on the computed potential surface
(e.g., Figure 3(b)-D), sothat the systemcan no longer escape
from them. For this purpose,we linked the width, depth, and
location of each topological feature with the number of
states, the number of trajectory steps, and the path con-
nections of each feature. This representation is intended to
consider different components of resilience, namely, lati-
tude, resistance, and precarioushess [17]. For example,
structural stability B’ involves 20 states,with a maximum of
three stepsrequired to leave it, and is irreversibly connected
to B (Figure 4(a)). In this way, we built a surfacethat appears
comparableto the traditional potential-like surfaces: yet, we
highlight in the next section how different it is, once
interpreted on the basis of the concepts supporting the
qualitative discrete—eventmodels used for this computation.
The state space concept provides an easy way to identify
structural stabilities, tipping points, and hysteresis.We stress
that such topological features do not correspond perfectly to

the so-called dynamics (i.e., with these names) in ODE
models, as the system here shifts sharply from one set of
discrete qualitative states to other discrete qualitative states
and could theoretically stay indefinitely in each of them.
When the system remains stuck in a specific structural
stability (e.g., B and B’ in Figure 2), all the states of such a
stability are by definition connected through specific paths.
The modeled ecosystem shifts from one state to the others
through differentiated trajectories and then potentially
comes back to the same state (Figure 4(), blue and green
arrows). These trajectories are numerous, with highly dis-
tinctive paths in terms of ecosystem composition (the
present components) or other properties. For example, it is
possible to plot such hysteresis as a function relating the
number of ecosystem components present to the number of
steps required to reach the states (Figures 4(b) and 4(c)).
Many other properties are available and often quanti-
fiablein the state space. It is relevant to use thesetrajectories
to characterizethe structural stability (e.g.,B’ in Figure 4(a)),
for example, by assigning it a “depth” defined by the
maximum number of discrete steps required to reach the
stability boundary and ultimately leave it (state colors) and
representing the resistance [17]. The state space gathers as
much information on transitions as on states,asit is possible
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Figure 3:From the mergedstate space(a), it is possibleto draw a tentative potential-like surface (b). In the mergedversion (a) of the full
termite state space (Figure 2), each SCC and basin has been reduced to a single node and redundant paths have been removed. Nodes
representing SCCs or basins (i.e., aggregatestates) are noted (s) (circles) and labeled with the componentspresentin all their states. From
this reduction of the state space, specific paths leading to the main ecosystem collapses (squares), and highlighting the sharp transitions
betweenthem, can bemore easily identified. For the potential surface(b), eachstructural stability (SCC, e.g.,B and B’) hasbeenrepresented
asawell with a width corresponding to its number of statesand a depth corresponding to the maximumnumber of stepsfor escapingit. The
deadlocks (e.g., D and D) are bottomless wells and are connected to other topological features with a continuous surface and sometimes
through tipping points (C) (red arrow). We explain in the main text why such a representation is fallacious, though.
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Figure 4:lllustration of the hysteresisfound in the termite ecosystemstatespace(a), highlighting two specifictrajectories (b). The structural
stability displayed is B" (Figures 2 and 3), composedof 20 states(a) labeled with a pair n/swhere n is an identifying number and s is the
number of discrete steps neededto exit the B’ stability (from O for states defining the boundary to 3 for the maximum number of stepsto
reach the boundary). The edgesare directed and labeled with the number of the rule that was applied to perform the transition (Table 2). One
specific cycling trajectory has been chosenin the B" stability @) (blue and green arrows), and this hysteresis is highlighted in the plane
(number of present componentsversus discrete steps,b left). A secondtrajectory is displayed in the sameplane (b right) to highlight the fact

that many trajectories in the state space may exhibit hysteresis.

to analyze which process (interaction) is responsible for
which transition between states or sets of states. For ex-
ample, the ecosystem shifts drastically from stability B’
toward deadlockD’ througha TP (Figure 3(@)-C, red arrow).
It is possibleto computea similarity index betweenall pairs
of states or topological features to estimate the TP magni-
tude. For example, a Jaccard index based on the present and

absent components would quantify the similarity between
successive states. As an illustration, we computed this
similarity index in a more complex wetland socioecosystem
modeled in the sameway (Figure 5(@@) [38] and automat-
ically identified TPs such as the transitions entering dead-
locks n/s 0 and 3 that were highly different from those seen
previously (Figure 5(b), the two first columns of the matrix).
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Figure 5:Example ofa more realistic socioecosystemanalyzedusing a discrete qualitative model, viewed byits mergedstate space(@) and its

tipping points (b). The state spaceof this wetland socioecosystem(), a temporary marsh with pastoralism [38], should be read downward,
from the initial state (pink hexagonalnode on top) to the terminal structural stability (red bottom node). Different stabilities (colors and
identifiers) are connectedthrough processes(i.e., edgesasdirectional arrows) mimicking qualitative transitions betweendistinct statesof the
socioecosystem being modeled. The similarity between these successive states (in terms of present components) may be quantified using a
Jaccard index (b) (hot colors) and plotted in a connectivity matrix grouping togetherall the structural stabilities reached by the ecosystem.
Transitions exhibiting the lowest Jaccard index values betweenhighly different statesclearly identify the ecosystem’stipping points (b) (left

column).

3. Comparison of the State Space with the
Potential Surface

A process-basedmodel such as the present model of a termite

ecosystemmay provide someinsights in ecology. In recent years,
a growing body of studies in ecology has promoted the con-
ceptual view of (sociojecosystem functioning that we refer to
here as the potential surface (Figure 4@). Although it has
sometimesbeencalled by other names, the principle remains the
same: this metaphor suggestsconsidering any ecosystemas a ball
roling down onto a hypothetical landscape madeup of a surface
in a higher dimension space [15, 17]. This (hypensurface

concept is borrowed from physics, where many systems have
been shown to change according to a potential parameterized by
intrinsic (e.g., state variables) and extrinsic variables (e.g., en—
vironmental conditions) [24, 25]. There is no doubt that this
conceptis a convenient one for use in ecology too [44, 46]. This

conceptual model is phenomenological, in that it potentially
describes pattems in observation and is not basedon knowledge
of the underlying mechanisms.Metaphors are often slippery and

it remains to be demonstrated that the potential as a concept is
appropriate to ecosystem dynamics and to environmental

processes(e.g., dimatology [21, 22,47)) in general. This section

lists five possible criticisms of the potential metaphor.

3.1.Vertical Force. One critical assumption of the potential
analogy concerns the gravitational force that constrains
movements on the surface. For the system to be located

above a certain elevation assumesthe energy is higher than
below that elevation due to the scalar field in which the
system is immersed. Does such a force exist in ecosystems?
And if yes, what is the nature of this force? Indeed, if the
potential surface is such an easy-to-handlemetaphor, it is
undoubtedly due to the restoring torque that drives the ball
along to the potential surface [15]. In physical systems,any
potential is the origination of aforce and is directly linked to
energy [11, 48]. This force is often gravity but may also be
associated with electrical or chemical potentials. In eco-
logical systems, to our knowledge, no force or energy has
beenidentified or analyzed, evenwhen living systemstend to
maintain their activity, for example,by homeostasis[49]. It
is even harder to imagine what the nature of this force or
these processes might be, considering that ecosystems are
simultaneously physical and biological (and anthropogenic)
objects.

A simple thought experiment might help in under-
standing what is at play in this force, if anything. Take a
simplified ecosystemsuch as vegetation in arid areas. In the
absence of rainfall (the environmental conditions, say
rainfall R), there is no vegetation(the state variable, biomass
B) present, even on fertile soil. The absenceof suchvariables
(8, R) (0, 0) may be,and usually is, considereda stable state
[28], even with a system showing stochastic noise. In other
words, the potential surface concept would plot the eco-
systemas a ball that has “fallen deepinto” a well [44]. Now,
let us push the systemtoward slightly wetter conditions and
the emergenceofvegetation. How would ecologists think the



ecosystem would behave? Would the system stay in this
(putative stable) statewith very little vegetationand rainfall?
Will it gradually increase the biomass, form vegetation
patterns, and start storing as much water as possible? Or will
it simply revert to the previous state,with no vegetation and
no more water?

The potential surface provides one (the?) answer. Due to
the metaphoric gravitational force in the landscape, it is
assumed that the ball representing the ecosystem will in-
evitably fall down to the stable state (8, R) 00, 0). This
assumption that the vertical dimension plays a critical role
(and that such a force does exist) remains to be demon-
strated in ecology. This is a hecessity, even if most ecologists
today feel that this is the behavior at play. Some studies have
already examined ecosystemsin semiarid conditions or in
controlled, poor environments [50]. So far, though, to our
knowledge, there has been no definitive demonstration of
attracting or repulsing behavior in the vicinity of stable
states. The truth is that probably no ecologist knows the
answer. The state space, as illustrated in the termite eco-
system (Figures 1 and 2), indicates whether the system can
shift from one state to another, according to the set of
processes driving the system. In our opinion, there is no
driving force for the ecosystem other than these identified
processes.

3.2. Reversible Isotropic Surface. Similarly, we may wonder
about the inner nature of the other (horizontal) dimensions
of the potential. In particular, are the ecosystemvariables or
the environmental conditions isotropic? Focusing on the
state variable (often plotted along the x-axis), is it as easyto
leave a stable state (i.e., a well, with central symmetry)
leftward as it is to leave it rightward? This questionis linked
to the previous limitation and challenges and the possible
attraction and repulsion of distinct potential zones,an area
of critical study in physical systems (e.g., climatology
[21, 47)). For example, let us assume that desert, savanna,
and forest are alternative stable states (still a matter of
debate); when leaving the savanna states, likely located
between the other two, will it be “easier” for the system to
reach the desert states than the forest states? Theoretically,
the potential assumes perfect symmetry between both di-
rections [17, 44], which our process-basedmodel does not
[30].

In other words, the potential surface assumesthere are
isotropic directions and reversible movementson it. More
generally, thereversibility of eachtrajectory of the ecosystem
can be questioned. This observation remains valid whatever
the shapeof the potential, possibly allowing for the hysteresis
already observedin ecology[16, 32]. More radically, we may
wonder whether movement on the potential surface is
possible everywhere. In the case of simplified ecosystems
with only one state variable, it may be assumed that the
systemcan gain or lose biomassequally as easily. In the case
of more realistic ecosystems,though, precisely those we are
endeavoring to understand, it may bethat regaining biomass
is no longer possible, whatever the predator- or climate-
related causes. In brief, the reversibility of the potential
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surface needs to be demonstrated too. Here again, the state
space of the termite ecosystem, the assumed model defini-
tion, demonstrateswhether the systemmay reach a deadlock
or exhibit irreversible dynamics (e.g., between B and B/,
Figure 2).

3.3. Surface Stability over Time. It is worthy of note that
biologists in the past used the concept of potential surface
too. The best known example is probably the epigenetic (or
fitness) landscape proposed by Waddington (Figure 6(b))
[51]. This landscape suggeststhat the phenotypic traits of an
organism are the result of a combination of genes. The
metaphor was powerful and has been widely used up until
now. Yet, a growing body of biologists today believesthere is
a major flaw with this potential surface: it is changing (.e.,
not frozen). Even when genesare responsible for the traits
examined, it has been observed that this landscape is highly
variable, changing over time in successive experiments
[52-54]. In brief, the potential surface cannot be plotted
once and for all.

We recall a critical assumption behind the potential
concept used in physics: a physical system modeled as a
dynamic system should be (is) ergodic. The ergodicity of a
system states that it exhibits the same statistical behavior
when averaged over time, in space or in any other system
dimensions (i.e., in its phase space, e.g., [55]). In other
words, a system that evolves over a long period tends to
“forget” its initial state, statistically speaking. Some ecolo-
gists have serious doubts that ecosystems are ergodic
[10, 56, 57]. Conversely, most ecologists think that eco-
systems have history that strongly constrains their fate
[18, 58-61]. Here again, the ecosystemswe talk about are not
simplified as prey-predator systems as they are sometimes
discussed. Real ecosystemsare thermodynamically openand
have many components that are subject to evolution. To our
knowledge, this ergodic property has never been demon-
strated in ecology. The state space approach presented here
does not assume ecosystem ergodicity in the dynamics
studied (Figure 2), but it is possible to adapt the model for
evolutionary and ever-changingdynamics, a perspective our
team is already exploring.

3.4. The Punctual Ball and the Thin Surface. As a fruitful

metaphor, the potential surface and its related concepts
simplify reality so as to improve our understanding. It be-
comes embarrassing, however, when such simplifications

provide an incorrect idea of reality. Can an ecosystemreally
be conceptualized as a punctual ball? An ecosystemis such a
complex object comprising a large number of components
and processesthat it is easy to imagine that some parts of it

would indeed follow a potential—its physical part, say—
while another part would not [11, 57]. The reason that the
whole system should exhibit a punctual location in the state
space has to be explored; and why not several locations

simultaneously? In addition, the systemwould likely exhibit
stochastic behavior, rather than showing the systemas a ball

moving into a cloud of uncertain locations in this space
(Figure 6(0)).
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Figure 6: Examples of various synthetic representations of system dynamics, including a potential-like surface @) [16], the epigenetic
surface (b) [51], and the drape concept (¢) inspired from [32]. Although these representations of dynamic systemsappear comparable, they
differ substantially in respect of their assumptions and conception of the (eco)system under investigation.

Additionally, this observation questionswhether or not  ecology, we may reasonably question whether processes
the (hypen)surface of the potential should have athickness@  follow mean field behavior, and this is often justified by the
hypervolume) (Figure 6(c)). In physics, the system must  huge number of components involved in the system. As in
exactly follow the potential in a mean-fieldapproximation,  biology (Figure 6(b)), ecological processes exhibit a high
even if noise often blurs the measures and the plot [48]. In variance which makes systems more unpredictable and may
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mean they show no average behavior (or that they explore
rare trajectories too). The state space proposes that the
ecosystem indeed follows some trajectories, but the ever-
changing state compositions in this space deny the uniform
and constant image of the ball (Figures 6(a) and 6(b)). The
system inevitably follows the state space, however, as it
contains all possible states and, according to the processes
involved, it should not leave this computed shape
(Figure 6(0)).

3.5.SurfaceDefinitionandDisturbances. Thedefinitionof the
potential surface itself challenges ecologists. How should it be
built? Which variables should be used? Ecosystem complexity
suggeststhat many state variables should be used, whereas most
ecological surfaces built so far use a single (one-dimensional)
variable (e.g., [29, 44)). Yet, deserts, savannas, and forests are
often assumed to belong to the same potential surface. This
simplification is questionable, considering that even savannas
and forests have radically different species compositions and
dimatic and soil conditions (e.g., [11, 12,62]). To what extent
should we merge different biomes (broad types of ecosystems)
into the same potential? It is predictable that boreal forests
would not belong to “the same” potential surface as tropical
forests, as they are controlled by radically different conditions,
essentially by temperatures and rainfall, respectively [63, 64].
There is a dear need to define potential functions with more
(state) variables.

One examplemayillustrate this fallacy. Empirical studies
of the potential surface assumethat the system spends more
time in stable states, and less time in unstable ones. For
example, some ecologists estimate the potential surface
basedon this central assumptionto identify the multimodal
stabilities of vegetation [20, 44]. There are many examplesof
systems in which this assumption is revealed to be wrong.
One such example is the simplistic pendulum system. In a
pendulum oscillation, the stable state is at the bottom (the
lowest elevation), while this is also the location at which the
system has the greatest speed and, thus, at which it spends
the shortest resident time. In brief, it is in no way recom-
mended that the stable and unstable states of any system be
identified on the basis of the time it spendsin various states.

Furthermore, environmental conditions supposedly
controlling some dimensions of the potential are not sys-
tematically external to the ecosystem. This issue has long
been debated in ecology and is basically linked to the or-
ganismic conception of ecosystems[36, 65]. Tansley initially
proposed the word ‘“ecosystem” to replace the word
“community,” and the debate lasted long about the inner
coherency of this object. When a ball falls from the tower of
Pisa, gravity is considered external to the ball being studied.
In the case of many ecosystems, what does excluding dis-
turbance from the system allow? With climate forcing, the
disturbance appears to be quite obviously external, spatially
and temporally, but in the case of a forest fire, an invasive
species, or an intrinsic human pressure, this assumption is
much less obvious [21, 32]. Can we be sure no feedback can
settle between disturbances and the ecosystems studied, as is
usually assumed[14, 16]? The resulting surface would likely
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differ strongly depending on the status of the disturbance.
Construction of the discrete, qualitative ecosystem model
presented here suggestsincluding all the processesat play in
the ecosystem(Tables 1 and 2, Figure 1), be they intemal or
external, and computing the resulting dynamics. Hence,
there is no need to confer a specific status on external
disturbances.

4. Discussion and Recommendations

We can now comparethe traditional potential from physics
commonly and empirically used in ecology (Figure 6())
with this potential surface computed on the basis of the state
space of a process-based model of a complex ecosystem
(Figure 3(b)). Keepingin mind the limitations listed pre-
viously, the comparison reveals some striking observations:

(@ On our computed potential surface, there is no
gravitational force pushing the system downward.
Only the (modeled) processesat play are capable of
moving the system from one state to the next, in the
state space. In particular, climbing up the surface
appears as easy as falling down (Figure 3(b)). This
metaphoric  vertical force now  appears
inappropriate.

(b) The potential surface is not isotropic and shows
strongly irreversible paths as interpreted from the
merged state space.When the systemshifts from one
structural stability, that is, from one stablearea (e.g.,
well B, Figure 3(@)) to the neighboringstability (well
B), anyreturn is forbidden. It is even possibleto plot
trajectories and hysteresis within each structural
stability (Figure 4).

(© The computed potential surface has no reason to be
stable over time. Indeed, the state space is provided
here for a specific ecosystem (termite colony)
composition(Figure 1(b)), but any newarrival in or
departure from the system components, and its
associated processes, would strongly modify the
resulting state space (Figure 2).

(d) The potential surface has been computed here on the
basis of discrete events, then transformed with an
assumption of continuity between states, and dis-
played in an arbitrary space(Figure 2). Many other
representations and coordinates for each state could
have been used, however, and consequently would
have strongly modified the potential surface repre-
sentation (Figure 3(b)). In particular, consideration
of the thick surface would have disqualified this
potential surface [32], instead of the discrete qual-
itative state space (Figure 3(a)).

(e A large number of variables of various natures have
been used to constrain this state space and its as-
sociated potential surface (Figure 1(b)). In addition,
perturbations and even disturbances are internal to
the system and contribute strongly to the surface
definition. This is not the case for traditional po-
tentials [17, 44].
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Table 1:Node categories, names, abbreviations, and descriptions of the termite colony ecosystemmodeled using the discrete qualitative

model (see Figure 1, adapted from [30]).

Name Initially Family Description Comment
Rp Present Inhabitants Reproductives The queen, the king, the eggs,and the nymphs
Wk Absent Inhabitants Workers All termites able to work: the larvae, workers, and pseudo-workers
Sd Absent Inhabitants Soldiers The termite soldiers
Te Absent Inhabitants Termitomyces The fungus cultivated by the termites
Ec Absent Structures Egg chambers All egg chambers plus the royal chamber
Fg Absent Structures Fungal gardens All the gardens in which the fungus is grown
Md Absent Structures Mound The upper structure of the colony
wd Absent Resources Wood The wood stored inside the colony
Ai Absent Resources Air of the nest The air inside the colony
S| Present Environment Soil The soil around the termite nest
At Present Environment Atmosphere The air around the termite nest
Ac Present Competitors Ant competitors All the ant speciesin competition with the termites
Table 2:List of the rules for modeling termite ecosystemfunctioning and development.
Rule Comment
(1) Wk*, Te"— Wd~, ai~ The workers and the fungi are consuming wood and air
@ Fg— Te~ The fungi need the fungal gardens in order to survive
(3) Wk*, SI"— wd*, Te*,Fg*, Theworkers are foraging in the soil for wood and fungus; from the soil, the workers are building the
Ect, Md* fungal gardens, the egg chambers, and the mount

4) Wd™— Wk, Te™

(5) Rp*,SI"—  Ec*

6) Rp*, Ect— WK™

(7) Wk*, wd*— Sd*,Rp™*

(8) Md*, At"— A"

(9 Wk — Fg~,Sd™

The workers and the fungus need to eat wood to survive
For the soil, the queen and the king can also build egg rooms
In the egg chambers, the queen and the king are producing eggsthat are becoming workers
Eating wood, the larvae are metamorphosing into soldiers and/or nymphaea
The air of the nest is being refreshed by passing through the mound and exchanging with the

atmosphere

The soldiers cannot survive without the workers to feed them, and the fungal gardens need

maintenance by the workers

(10) Wk™, Rp™— Ec”

The egg chambers need maintenance by the workers or the reproductives; otherwise they collapse
(11 Sd*— Ac

The soldiers are killing ant competitors intruding into the colony

(12) A", Sd—. WK™, Rp™ Without the soldiers, the ant competitors are mvadmg the colony and killing the workers and the
reproductives

(13) Ar— Rp~,Wk~, Te” The reproductives, the workers, and the fungus need to breathe the air of the nest to survive

The conditions of application, realizations, and detailed explanationsare given for each rule. The rule arrows indicate the transformation (rewriting) of the
network at the next step [30]. Discrete systemsare used to exhaustively characterize the dynamics of an integrated ecosystem (Methods in Ecology and

Evolution, 00:1-13 [30]).

For all these reasons,we think that empirical potentials
appear to be inaccurate approximations of process-based
ecosystem state spaces. Conversely, the state space seemsto
be a convenient substitute for the traditional potential
[18, 30]. It has still to be testedin contrasted case studies to
evaluate its interpreting power [37, 38]. The discrete event
model family used in computer science and in biology
[31, 41] appears to provide an interesting avenue for un-
derstanding ecosystem dynamics. These process-based
models were developed to understand systems made up of
discrete components in interaction. Some of them were
initially dedicated to resource allocation or signaling net-
works [35, 40] and others to linguistic or landscapemodeling
[33, 66,67] and plant growth [34, 68]. Such models may be
combined with networks representing the constitutive en-
tities (the nodes) and their processes (the edges), for ex—
ample, to model rural landscapes [67] or ecosystems [18].
Another central advantage they offer is that they allow for
rigorous formalization of the dynamics studied, aswell asan
understanding of systembehavior in all its dimensions. They

are also intuitive, highly adaptable (e.g., with quantitative
and multivalued versions), and easy to manipulate using
existing software [45]. In addition, such state spacesappear
conceptually similar to state-and-transition models devel-
oped to manage rangelands, well known for exhibiting
multiple states and successional dynamics [43]. Ultimately,
they provide interpretations of (socio)ecological entities
which, when rigorously formalized, are no longer meta—
phoric [37, 38, 56].

There can be no doubt that ecosystems are complex,
despite a few of them remaining simple. Ecosystem pro-
cessesare notoriously noisy and difficult to measure, while
the biological components of ecosystemsoften add a strong
variance to the overall behavior. Despite this challenge,
ecologists need to continue collecting data on ecosystemsto
improve the understanding of such systemsand, ultimately,
their management. But where does ecological complexity
reside? Is it in the ecosystem state or in the ecosystem
dynamics? Ecologists are commonly inclined to scrutinize a
snapshot of the ecosystem (the pattern) instead of its long-
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term (process) dynamics. For example,it is inappropriate to
study traditional ecosystempotential on the basis of isolated
states(Figure 6) rather than thetrajectories connecting them
(Figure 4). Ecosystems are historical objects experiencing
abrupt changes with probable nonergodic behaviors
[18, 55, 56). Most ecosystem studies have been performed
over relatively short timescales, typically over one or two
human generations.We still know very little aboutthe long-
term behavior of ecosystems, i.e., over several generations of
the slowest component, despite increasing efforts in his—
torical ecology and paleoecology (e.g., [69, 70]). The usual
variables under long-term study often concern vegetation
and dimate, but rarely fauna, soils, and/or human com-
ponents. An understanding of long-term ecosystem be-
haviors is now becoming an imperative, with realistic
modeling as a corollary.

At this stage, a decisive recommendation is not to
neglect the process of fitting the model to observations. To
date, it has been rare for traditional potentials to fit ob-
served ecosystems[27, 44] and has mainly involved pattern
and fragmented datasets. To our knowledge, it has not once
been the case with process and ecosystem dynamics [32].
Most of the time, the model is displayed to interpret a
posteriori observations,and not strictly fitted to them. This
critical preliminary step should be performed with more
variables, on longer trends and with finer models, a
commentwhich is true for discrete event models too. Data
collection in ecology is particularly challenging, consid-
ering the cost of surveying a complete ecosystem(i.e., most
components) and considering the number of components,
but substitutes can be found to start this program of work.
Some chemostatand controlled experiments may allow for
high resolution and long-term measurements [71], while
some large scale ecosystems have begun to have rich da-
tabasestoo [27]. There appears to us to bean urgent need to
start calibrating potential-like and discrete-event models
on such complex data and to test their related hypotheses.
To generalize the potential concept to various contrasting
ecosystems, it will be necessary to confirm its power and
usefulness.

These recommendations may all be summarized as a
triangle of improvements that feed into the three main
components of any research theme of complexity, namely,
data, model, and conceptresearch. In between, there are fits,
ideas, and tools that enable continuous testing of emerging
concepts such as state spaces and potential surfaces. At
present, somesides of this triangle appearto bemissing, with
further studies being required to produce a satisfying theory
of ecosystem. As shown above, potential-like surfaces may
not be the most appropriate concepts for describing and
understanding complex ecosystembehaviors and dynamics.
Even in cases where the potential concept proved appro-
priate, it would be fruitful and heuristic to search for some
additional views [32]. For example, we recently proposed
also looking for linguistic principles in living systemsand
ecosystems [72].

Simultaneously seeking new mathematical tools is also
an imperative; such models include these underused qual-
itative discrete event models [30]. Other tools have been
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proposedin the past,and it would bea shameto ignore them
or fail to fully acknowledgethem. For example, Thom’swork
showsrich but unwieldy algebra specifically for potentials in
any field[25]. Economic and ethological studieshave already
tried, unsuccessfully, to use these tools. In addition, we
believe it is crucial to develop possibilistic models for ex-
haustive characterization of ecosystem trajectories, instead
of probabilistic models focusing on a few dominant tra-
jectories only.

In conclusion, we would like to warn the ecologist
community of the hazards of drawing an analogy between
physical and ecological systems. The history of ecology has
already shown how this analogy once sent the community
down potentially erroneous and/or uselesspathways [11]. It
is often fruitful to borrow concepts from other scientific
fields, but they need to be tailored to the questions under
examination at best and, at worst, they could send us off
down a slippery, dangerous slope.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] I. A. Hatton, K. S. McCann, J. M. Fryxell etal., “The predator-
prey power law: biomass scaling across terrestrial and aquatic
biomes,” Science, vol. 349, no. 6252, 2015.

[2] S. Kéfi, V. Miele, E. Wieters, S. Navarrete, and E. Berlow,
“How structured is the entangled bank? The surprisingly
simple organization of multiplex ecological networks leads to
increased persistence and resilience,” PLoS Biology, vol. 14,
no. 8, Article ID e1002527,2016.

[3] R. M. May, Stability and Complexity of Model Ecosystems,
Princeton University Press, Princeton, NY, USA, 1974.

[4] E. Th ebaultand C. Fontaine, “Stability of ecological
communities and the architecture of mutualistic and
trophic networks,” Science, vol. 329, no. 5993,
pp. 853-856, 2010.

[5] R. C. Dewar, C. H. Lineweaver, R. K. Niven, and
K. Regenauer-Lieb, “Beyond the second law,” Entropy Pro-
duction and Non-Equilibrium Systems, Springer, Berlin,
Germany, 2011.

[6] B. C. Patten, “Network integration of ecological extremal
principles: exergy, emergy, power, ascendency, and indirect
effects,” Ecological Modelling, vol. 79,no.1-3, pp. 75-84,1995.

[7] E. Ostrom, “A generalframework for analyzing sustainability
of social-ecological systems,” Science, vol. 325, no. 5939,
pp. 419-422, 2009.

[8] I. Steffan-Dewenter,M. Kessler, J. Barkmann et al., “Tradeoffs
between income, biodiversity, and ecosystem functioning
during tropical rainforest conversion and agroforestry in-
tensification,” Proceedings of the National Academy of Sci-
ences,vol. 104, no. 12, pp. 4973-4978, 2007.

[9] C. Gaucherel, “Ecosystem complexity through the lens of
logical depth: capturing ecosystemindividuality,” Biological
Theory, vol. 9, no. 4, pp. 440-451, 2014.



Complexity

[10] S. P.-V. Frontier, D. A. Lepétre, D. Davoult, and C. Luczak,
Ecosystémes. Structure, Fonctionnement, Evolution, Dunod,
Paris, France, 4th edition, 2008.

[11] C. Gaucherel, “Physical concepts and ecosystem ecology: a
revival?” Journal of Ecosystemand Ecography, vol. 8,2018.

[12] R. E. Ricklefs and G. L. Miller, Ecology,Freeman, New York,
NY, USA, 4th edition, 2000.

[13] R. H. Mac Arthur and E. O. Wilson, The Theoryof Insular
Zoogeography,Princeton Univesity Press, Princeton, NY,
USA, 1963.

[14] C. S. Holling, “Resilience and stability of ecological systems,”
Annual Review of Ecology and Systematics, vol. 4, no. 1,
pp. 1-23, 1973.

[15] M. Scheffer, Critical Transitions in Nature and Society,
Princeton University Press, Princeton, NJ, USA, 2009.

[16] M. Scheffer,S. Carpenter,). A. Foley, C. Folke, and B. Walker,
“Catastrophic shifts in ecosystems,” Nature, vol. 413,no. 6856,
pp. 591-596, 2001.

[17] B. Walker, C. S. Holling, S. R. Carpenter, and A. Kinzig,
“Resilience, adaptability and transformability in social-eco-
logical systems,” Ecology and Society, vol. 9, no. 2, 2004.

[18] C. Gaucherel, H. Théro, A. Puiseux, and V. Bonhomme,
“Understand ecosystemregime shifts by modelling ecosystem
development using boolean networks,” Ecological Complexity,
vol. 31, pp. 104-114, 2017.

[19] R. V. Solé and J. Bascompte, Self-Organization in Complex
Ecosystems,Princeton University Press, Princeton, NJ, USA,
2006.

[20] M. Hirota, M. Holmgren, E. H. Van Nes, and M. Scheffer,
“Global resilience of tropical forest and savanna to critical
transitions,” Science, vol. 334, no. 6053, pp. 232-235, 2011.

[21] B. W. Brook, E. C. Ellis, M. P. Perring, A. W. Mackay, and
L. Blomqyist, “Does the terrestrial biosphere have planetary
tipping points?” Trendsin Ecology& Evolution, vol. 28,no. 7,
pp. 396401, 2013.

[22] C. Gaucherel and V. Moron, “Potential stabilizing points to
mitigate tipping point interactions in earth’s climate,” In-
ternational Journal of Climatology, vol. 37,no. 1, pp. 399-408,
2016.

[23] E. H. van Nes, M. Hirota, M. Holmgren, and M. Scheffer,
“Tipping points in tropical tree cover: linking theory to data,”
Clobal Change Biology, vol. 20, no. 3, pp. 1016-1021,2014.

[24] R. Badii and A. Politi, Complexity,Hierarchical Structuresand
Scaling in Physics, Cambridge University Press, Cambridge,
UK, 1997.

[25] R. Thom, Structural Stability and Morphogenesis,Benjamin,
Reading, MA, USA, 1975.

[26] F. Accatino, C. De Michele, R. Vezzoli, D. Donzelli, and
R. J. Scholes, “Tree-grassco-existencein savanna: interactions
of rain and fire,” Journal of Theoretical Biology, vol. 267,no. 2,
pp. 235-242, 2010.

[27] M. Scheffer, S. H. Hosper, M.-L. Meijer, B. Moss, and
E. Jeppesen, “Alternative equilibria in shallow lakes,” Trends
in Ecology & Evolution, vol. 8, no. 8, pp. 275-279,1993.

[28] A. C. Staver, S. Archibald, and S. Levin, “Tree cover in sub-
Saharan Africa: rainfall and fire constrain forest and savanna
as alternative stable states,” Ecology, vol. 92, no. 5,
pp. 1063-1072, 2011.

[29] E. H. Van Nes and M. Scheffer, “Slow recovery from per-
turbations as a generic indicator of a nearby catastrophic
shift,” The American Naturalist, vol. 169, no. 6, pp. 738-747,
2007.

[30] C. Gaucherel and F. Pommereau, “Using discrete systemsto
exhaustively characterize the dynamics of an integrated

13

ecosystem,” Methods in Ecology and Evolution, vol. 10, no. 9,
pp. 1-13, 2019.

[31] F. Pommereau, Algebras of Coloured Petri Nets, Lambert
Academic Publishing (LAP), Riga, Latvia, 2010.

[32] C. Hély, H. H. Shuggart, B. Swap, and C. Gaucherel, “The
drape concept to understand ecosystem dynamics and its
tipping points,” 2020.

[33] H. Ehrig, M. Pfender, andH. J. Schneider, “Graph-grammars:
an algebraic approach,” in Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (Swat 1973),
pp.167-180,IEEE Transactionson Cybernetics,lowa City, A,
USA, October 1973.

[34] J.-L. Giavitto and O. Michel, “Modeling the topological or-
ganization of cellular processes,” Biosystems, vol. 70, no. 2,
pp. 149-163, 2003.

[35] W. Reisig, Understanding Petri Nets, Springer Berlin Hei-
delberg, Berlin, Germany, 2013.

[36] J. S. Turner, The Extended Organism: The Physiology of Ani-
mal-Built Structures, Harvard University Press, Cambridge,
MA, USA, 2009.

[37] M. Cosme, C. He’ly,F. Pommereau et al., “East-African
rangeland dynamics: from a knowledge-basedmodel to the
possible futures of an integrated social-ecological system. In
review,” 2020.

[38] C. Gaucherel, C. Carpentier, I. R. Geijzendorffer, C. Nou™s,and
P. F.,, “Long term development of a realistic and integrated
ecosystem,” 2020.

[39] H. G. Fowler, V. Pereira da-Silva,L. C. Forti, and N. B. Saes,
“Population dynamics of leaf cutting ants: a brief review,” Fire
Ants and Leaf-Cutting Ants, pp. 123-145, Westview Press,
Boulder, CO, USA, 1986.

[40] M. A. Bla"tke,M.Heiner, and W. Marwan, “Tutorial,” in Petri
Nets in Systems Biology, Otto-von-Guericke University
Magdeburg, Magdeburg, Germany, 2011.

[41] J.-L. Giavitto, H. Klaudel, and F. Pommereau, “Integrated
regulatory networks (IRNs): spatially organized biochemical
modules,” Theoretical Computer Science, vol. 431, pp. 219-
234, 2012.

[42] J. M. Dambacher,H. K. Luh, H. W. Li, and P. A. Rossignol,
“Qualitative stability and ambiguity in model ecosystems,”
The American Naturalist, vol. 161,no. 6, pp. 876-888, 2003.

[43] B. T. Bestelmeyer, A. Ash, J. R. Brown et al., “State and
transition models: theory, applications, and challenges,”
Rangeland Systems, pp. 303-345,Springer, Berlin, Germany,
2017.

[44] M. Scheffer, S. R. Carpenter, V. Dakos, and E. H. van Nes,
“Generic indicators of ecological resilience: inferring the
chance of a critical transition,” Annual Review of Ecology,
Evolution, and Systematics, vol. 46, no. 1, pp. 145-167,2015.

[45] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool
TINA—construction of abstractstate spacesfor petri nets and
time petri nets,” International Journal of Production Research,
vol. 42, 2004.

[46] V. N. Livina, F. Kwasniok, and T. M. Lenton, “Potential
analysis reveals changing number of climate states during the
last 60 kyr,” Climate of the Past, vol. 6, no. 1, pp. 77-82, 2010.

[47]1 T. M. Lenton, V. N. Livina, V. Dakos, and M. Scheffer,
“Climate bifurcation during the last deglaciation?” Climate of
the Past, vol. 8, no. 4, pp. 1127-1139,2012.

[48] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Appli-
cations to Physics, Biology and Chemistry, Perseus Publishing,
New York, NY, USA, 2001.

[49] J. Lovelock, TheAgesofGaia: A Biographyof Our LivingEarth,
Oxford University Press, Oxford, UK, 2000.



14

[50] O. Lejeune, M. Tlidi, and P. Couteron, “Localized vegetation
patches: a self-organized response to resource scardty,” Physical
Review E, vol. 66, no. 1, 2002.

[51] C. H. Waddington, “The epigenotype,” Endeavour, vol. 1,
pp. 1820, 1942.

[52] S. Gawrilets, “Highimensional fitness landscapesand speciation,”
in Evolution-The Extended Synthesis, M. Pigliucci and G. B.
Mu’ller,Eds., pp. 45-79, MIT Press Scholarship Online, Cam-
bridge, MA, USA, 2010.

[53] H. Ledford, “Language: disputed definitions,” Nature, vol. 455,
no. 7216, pp. 1023-1028, 2008.

[54] V. V. Ogryzko,“Erwin schroedinger,frandis crick and epigenetic
stability,” Biology Direct, vol. 3, no. 1, p. 15, 2008.

[55] J. Vollmer, “Chaos, spatial extension, transport, and non-equi-
librium  thermodynamics,” Physics Reports, vol. 372, no. 2,
pp. 131-267, 2002.

[56] C. Gaucherel, P. H. Gouyon, and]. L. Dessalles,Information, the
Hidden Side of Life, ISTE, Wiley, London, UK, 2019.

[57] E. P. Odum, “Energy flow in ecosystems:a historical review,”
American Zoologist, vol. 8, no. 1, pp. 11-18, 1968.

[58] F. Bouchard, “How ecosystemevolution strengthensthe case
for functional pluralism,” Functions: Selection and
Mechanisms, pp. 83-95, Springer Netherlands, Dordrecht,
Netherlands, 2013.

[59] S.J. Gould, Wonderful Life: The BurgessShale and the Nature of
History, W. W. Norton & Company,New York, NY, USA, 1989.

[60] C. He’ly,P. Braconnot, J. Watrin, and W. Zheng, “Climate and
vegetation: simulating the African humid period,” Comptes
Rendus Geosdence, vol. 341, no. 8-9, pp. 671-688,2009.

[61] K. Sterelny, “Contingency and history,” Philosophyof Science,
vol. 83, pp. 1-18, 2015.

[62] J. Ratnam,W. J. Bond, R.]J. Fenshamet al.,“When is a “forest” a
savanna, and why does it matter?’ Global Ecology and Biogeog-
raphy, vol. 20, no. 5, pp. 653-660, 2011.

[63] Y. Bergeron and A. Leduc, “Relationships betweenchangein fire
frequency and mortality due to spruce budworm outbreak in the
southeastern Canadian boreal forest,” Joumal of Vegetation Sci-
ence, vol. 9, pp. 493-500, 1998.

[64] B.J. Stocks,M. A. Fosberg,T. J. Lynham et al., “Climate change
and forest fire potential in Russian and Canadian boreal forests,”
Cimatic Change, vol. 38, no. 1, pp. 1-13,1998.

[65] A. G. Tansley, “The use and abuse of vegetational concepts and
terms,” Ecology, vol. 16, no. 3, pp. 284-307, 1935.

[66] N. Chomsky, Studies on Semantics in Generative Grammar,
Mouton & Co., NV Publishers, La Haye, Netherlands, 1972.

[67] C. Gaucherel, F. Boudon, T. Houet, M. Castets,and C. Godin,
“Understanding patchy landscape dynamics: towards a
landscape language,” PLoS One, vol. 7, no. 9, Article ID
e46064, 2012.

[68] C. Godin, “Representing and encoding plant architecture: a re-
view,” Annals of Forest Sdence, vol. 57, no. 5, pp. 413-438,2000.

[69] C. L Crumley, “Historical ecology:a multidimensionalecological
orientation,” in Historical Ecology: Cultural Knowledge and
Changing Landscapes, C. L. Crumley, Ed.,pp. 1-16, School of
American Research Press, Santa Fe, NM,USA, 1994.

[70] C. Hély, L. Bremond, S. Alleaume, B. Smith, M. T. Sykes, and
J. Guiot, “Sensitivity of African biomes to changesin the pre-
cipitation regime,” Global Ecologyand Biogeography,vol.15, no. 3,
pp. 258-270, 2006.

[71] M. J. Wade, J. Harmand, B. Benyahia et al., “Perspectives in
mathematical modelling for microbial ecology,” Ecological
Modelling, vol. 321, pp. 64-74, 2016.

[72] C. Gaucherel, The Languagesof Nature. When Nature Writes
to Itself, Lulu editions, Paris, France, 2019.

Complexity



