Skip to main content

JPI Oceans MiningImpact research expedition heads to sea

The German research vessel RV SONNE has just left port in Manzanillo, Mexico, for the second leg of a 14-week long research cruise to the Clarion-Clipperton fracture Zone (CCZ) in the Northeast Pacific.

JPI Oceans MiningImpact research expedition heads to sea

  • 08 April 2019

The German research vessel RV SONNE has just left port in Manzanillo, Mexico, for the second leg of a 14-week long research cruise to the Clarion-Clipperton fracture Zone (CCZ) in the Northeast Pacific.

JPI Oceans MiningImpact research expedition heads to sea

With 30 partners from nine European countries and led by the GEOMAR Helmholtz Centre for Ocean Research Kiel, the aim is to establish a baseline of environmental standards before potential future mining of manganese nodules in the deep sea commences. The area to be investigated by the research project "MiningImpact" is located in the Clarion Clipperton Zone (CCZ) in the northeast Pacific at approximately 4,500 metres water depth shrouded in complete darkness. Here, in an area of five million square kilometres, manganese nodules are abundantly found on the seabed. Their metal content offers a potential for commercial deep-sea mining. In recent years mineral raw materials from the deep sea have become the focus of some countries and companies in order to secure their supply with rare earth metals. 

The seabed between Mexico and Hawaii is part of the common heritage of mankind, as it is not located in the Exclusive Economic Zones of individual countries. This area is managed by the International Seabed Authority (ISA) based in Kingston, Jamaica. The ISA is currently working on a so-called “Mining Code”, which will form the legal framework for all future deep-sea mining activities. Part of this international agreement are stringent regulations for environmental monitoring and for the development of environmental standards in the deep sea. The European JPI Oceans project "MiningImpact" is dedicated to the question of how the state of the deep sea ecosystem can be assessed in order to investigate further the impacts of anthropogenic disturbances at the seafloor. 

During this research campaign with a duration of more than 100 days, scientists will carry out independent baseline investigations of the natural state of the marine ecosystem in the German contract area of the Federal Institute for Geosciences and Natural Resources (BGR) and in the Belgian contract area of the company, Global Sea Mineral Resources (DEME-GSR). The latter plans to test components of a collector for nodules in these two areas. 

“Employing state-of-the-art equipment will allow us to define the current state of the ecosystem at the seafloor and to compare it with future samples after the nodule collector test has taken place. In addition to surveying the biodiversity across different animal classes, our work also includes studies on ecosystem metabolism, particularly on the seafloor, the dynamics of bottom currents, in-situ ecotoxicology, food web experiments and much more” explains the project coordinator and chief scientist, Dr. Matthias Haeckel from GEOMAR.

To conduct this work, tools such as several benthic lander systems, the remotely-operated vehicle Kiel6000, cameras for observing benthic organisms and 60 different sensors for measuring the bottom current and the turbidity of the water column are being used.

The research team onboard the RV SONNE will investigate in detail, how different species are interconnected in the deep sea and how the biodiversity in manganese nodule habitats varies both spatially and temporally. “Only if we understand this, can we estimate what effects a large-scale anthropogenic disturbance on the seafloor might have”, says Dr. Haeckel.

Another focus of this expedition is the detection and investigation of particle concentrations in a sediment cloud generated by deep-sea mining. At present, a large-scale eddy with a diameter of about 300 kilometres, which was created about six months ago by the trade winds off Central America, is slowly moving towards the Clarion-Clipperton-Zone. Its effects are expected to be detectable even at water depths of 4,000 meters. “We know that propagating eddies increase the flow rates of sediments up to two to three times. Thus, the fine sediment layer at the sea floor can be whirled up and the sediment particles deposited during deep-sea mining can be further distributed. So far, we have not been able to observe the concentration and strength of a sediment cloud that might be created by such an eddy directly. We would now like to try this with the multitude of different sensors and devices we have with us”, says Matthias Haeckel.

This MiningImpact project will follow up on the results of the first JPI Oceans project which was concluded in late December 2017. While the initial project investigated experimental and rather small disturbances of the seafloor over decadal timescales, now in the second project, scientists want to independently conduct and comprehensively monitor the environmental impacts of an industrial component test in real-time. However, the first collector trial planned in parallel with the current cruise had to be delayed due to technical issues.

“Although this meant that we had to modify our work programme, there are still so many unanswered questions about deep-sea ecosystems that we can use this delay to our advantage for continued fundamental research”, Dr. Haeckel.

Background and disclaimer

Funding support to this new MiningImpact project, which exclusively focuses on studying the impacts on and risks for the marine environment, does not imply that JPI Oceans or its Member Countries either endorse or disapprove of seafloor mining and related operations.

MiningImpact is conducted independently of DEME-GSR activities. DEME-GSR is responsible for obtaining all necessary permissions for its  operations and does not receive any funding from the MiningImpact project. Neither does the MiningImpact project receive any financial contributions from DEME-GSR. DEME-GSR is further responsible to set up a monitoring programme for its industrial component trial as required by the International Seabed Authority. 

  • Funding for the project was provided under the framework of JPI Oceans by: 
  • Belgian Science Policy Office (BELSPO) and Flanders EWI Department, Belgium
  • The Federal Ministry for Education and Research (BMBF), Germany
  • Research Council of Norway (RCN), Norway
  • The Netherlands Organization for Scientific Research (NWO), The Netherlands
  • Fundação para a Ciência e a Tecnologia (FCT) and Direção-Geral de Política do Mar (DGPM), Portugal

Other institutions participate in the project with their own resources.